이상엽/ 복소벡터공간

복소벡터공간

정의

복소수체 \mathbb{C} 에 대한 가군. 즉 적당한 집합 V 에 대해 벡터공간 (V, \mathbb{C}, +, \cdot) 을 복소벡터공간이라 한다.

((V, \mathbb{C}, +, \cdot) 에서 \mathbb{C} 는 스칼라를 복소수에서 가져왔다는 얘기다. 실수벡터공간에서는 스칼라를 어디서 가져왔는지를 생략해서 표기한 셈. 엄밀하게 쓰면 (V, \mathbb{R}, +, \cdot) 이 되지만 일반적으로 생략해서 표기한다.)

또한 모든 복소 n-튜플 (v_{1}, v_{2}, ... , v_{n}) 의 집합을 복수 n-공간이라 하고 \mathbb{C}^{n} 으로 표시한다.

복소켤레

\mathbb{C}^{n} 의 임의의 벡터

  • v = (v_{1}, v_{2}, ... , v_{n})
    • = (a_{1} + b_{1}i, a_{2} + b_{2}i, ... , a_{n} + b_{n}i)
    • = (a_{1}, a_{2}, ... , a_{n}) + i(b_{1}, b_{2}, ... , b_{n})
    • = Re(v) + i Im(v)

에 대하여 v 의 복소켤레 (복소수 부분의 부호만 바뀜)

  • \bar{v} = (\bar{v_{1}}, \bar{v_{2}}, ... , \bar{v_{n}}) = Re(v) - i Im(v)
  • ex 1) v = (1+i, -i, 3, 3i) 에 대하여 Re(v), Im(v), \bar{v} 를 구하시오
    • Re(v) = (1, 0, 3, 0)
    • Im(v) = (1, -1, 0, 3)
    • \bar{v} = Re(v) - i Im(v) = (1 - i, i, 3, -3i)
  • ex 2) A = \left( \begin{array}{rr} 1 - i & 2i \\ -1 & 3+2i \end{array} \right) 에 대하여 \bar{A}, det(\bar{A}) 를 구하시오
    • \bar{A} = \left( \begin{array}{rr} 1 + i & -2i \\ -1 & 3-2i \end{array} \right)
    • det(\bar{A}) = 3 - 2i + 3i + 2 - 2i = 5 - i 

대수적 성질

  • \mathbb{C}^{n} 의 벡터 u, v 와 스칼라 k 에 대해
    • \bar{\bar{u}} = u
    • \overline{ku} = \bar{k} \bar{u}
    • \overline{u \pm v} = \bar{u} \pm \bar{v}
  • m \times k 행렬 A k \times n 행렬 B 에 대해
    • \bar{\bar{A}} = A
    • (\overline{A^{T}}) = (\bar{A})^{T}
    • \overline{AB} = \bar{A} \bar{B}

복소내적공간

정의

복소벡터공간 (V, \mathbb{C}, +, \cdot) 의 두 벡터 u = (u_{1}, u_{2}, ... , u_{n}), v = (v_{1}, v_{2}, ... , v_{n}) 의 내적 <u, v> : V \times V \to \mathbb{C}

<u, v> = u \cdot v = u_{1} \bar{v_{1}} + u_{2} \bar{v_{2}} + ... + u_{n} \bar{v_{n}}

로 정의한다. 또한 내적이 정의되어 있는 복소벡터공간을 복소내적공간이라 한다.

(만약 뒤에 있는 벡터에 켤레를 취해주지 않으면 노름 값이 0이나 음수가 나올 수가 있다. 때문에 뒤의 벡터에 켤레를 취해서 노름 값을 자연스럽게 만들어 줌. 엄밀히 말해주면 위의 연산이 내적공간의 연산이 기본이고, 실수벡터공간에서는 켤레를 취해줘도 의미가 없기 때문에 생략이 되었던 것)

성질

복소내적공간의 세 벡터 u, v, w 와 스칼라 k 에 대해 다음 성질이 만족한다.

  • <u, v> = \overline{<v, u>}
  • <u + v, w> = <u, w> + <v, w>
  • <u, v + w> = <u, v> + <u, w>
  • <ku, w> = k<u, w>
  • <u, kv> = \bar{k}<u, v>
  • v \neq \vec{0} 일 때 <v, v> > 0

고윳값과 벡터

정의

복소정사각행렬 A 에 대하여 고유방정식 det(\lambda I - A) = 0 의 복소해 \lambda A 의 복소고윳값이라 한다.

또한 Av = \lambda v 를 만족시키는 모든 벡터 v 의 집합을 A 의 고유공간, 고유공간의 영벡터가 아닌 벡터를 A 의 복소고유벡터라고 한다.

  • ex) A = \left( \begin{array}{rr} 2 & 1 \\ -5 & -2 \end{array} \right) 일 때
    • det(\lambda I_{2} - A) = det(\left( \begin{array}{rr} \lambda - 2 & -1 \\ 5 & \lambda + 2 \end{array} \right)) = \lambda^{2} + 1 = 0
    • \therefore \lambda = i or -i
    • \lambda = i 일 때
      • V = t \left( \begin{array}{rr} - {i + 2 \over 5} \\ 1 \end{array} \right)
      • 고유공간 =\{(- {i + 2 \over 5} , 1) \}
      • 고유벡터 =(- {i + 2 \over 5}t , t) (t \neq 0)

정리

\lambda 가 실 정사각행렬 A 의 고윳값이고 v 는 이에 대응하는 고유벡터이면, \bar{\lambda} 또한 A 의 고윳값이며 \bar{v} 는 이에 대응하는 고유벡터이다.

유니터리 대각화

용어의 정의

켤레전치행렬

복소행렬 A 의 전치행렬을 구한 다음 각 성분을 켤레인 복소수로 바꾼 행렬 A^{H} A 의 켤레전치행렬 또는 에르미트 전치행렬이라 한다.

스칼라 k m \times r 행렬 A r \times n 행렬 B 에 대해 다음이 성립한다.

  • (A^{H})^{H} = A
  • (A \pm B)^{H} = A^{H} \pm B^{H} (복부호 동순)
  • (kA)^{H} = \bar{k} A^{H}
  • (AB)^{H} = B^{H} A^{H}

에르미트행렬

A = A^{H} 가 성립하는 복소정사각행렬 A 를 에르미트행렬이라 한다.

유니터리행렬

복소정사각행렬 A 의 역행렬 A^{-1} 에 대하여 A^{-1} = A^{H} 가 성립하는 행렬 A 를 유니터리행렬이라 한다.

정규행렬

A A^{H} = A^{H} A 가 성립하는 복소정사각행렬 A 를 정규행렬이라 한다. 에르미트행렬, 유니터리행렬 등이 이에 해당한다.

유니터리 대각화

정의

P^{H}AP = D 가 복소대각행렬이 되는 유니터리행렬 P 가 존재하면 복소정사각행렬 A 는 유니터리 대각화가능하다고 한다.

또한 이러한 임의의 행렬 P A 를 유니터리 대각화한다고 한다.

정리

유니터리 대각화 가능한 행렬은 정규행렬이며, 그 역도 성립한다. 즉 정규행렬은 유니터리 대각화 가능하다.

에르미트행렬 A의 유티너리 대각화 과정

  1. A 의 모든 고유공간의 기저를 구한다.
  2. 고유공간의 정규직교기저를 구한다.
  3. 기저벡터를 열벡터로 하는 행렬 P 는 유니터리행렬이고, A 를 대각화 한다.
[ssba]

The author

지성을 추구하는 사람/ suyeongpark@abyne.com

댓글 남기기

This site uses Akismet to reduce spam. Learn how your comment data is processed.