Category Archives: 배우기

이상엽/ 해석학/ 실수체계

자연수

  • 자연수로부터 실수체계를 단계적으로 구성 가능하다는 것을 바이어슈트라스, 데데킨트가 증명 함

페아노 공리계

자연수는 다음의 다섯 가지 공리로 이루어진 페아노 공리계를 만족하는 수체계이다.

  1. 1 \in \mathbb{N}
  2. n \in \mathbb{N} \Rightarrow n' \in \mathbb{N}
  3. \forall n \in \mathbb{N}, 1 \neq n'
    • 1은 자연수의 최소원소
  4. \forall m \in \mathbb{N}, n' \neq m' \Rightarrow n = m
    • 자연수의 순서 구조가 순환하는 것을 방지하기 위한 공리
    • 만일 1 다음이 2, 2 다음이 3, 3 다음이 4, 4 다음이 2라는 집합이 있다면 1의 다음수와 4의 다음수가 같아져 버리는 경우가 발생. 그래서 다음 수가 같다면 두 수는 같다고 정의가 필요.
  5. 1 \in S \wedge (\forall n \in S, n' \in S) \Rightarrow \mathbb{N} \subseteq S
    • 집합 내에 1이 존재하고 집합 내 모든 원소가 다음 수를 갖는 집합은 자연수 집합을 포함한다.
    • 1 \in S \wedge (\forall n \in S, n' \in S) 을 만족하는 집합을 계승집합이라고 한다.
    • 자연수 집합은 가장 작은 계승집합이다.

‘1’과 ‘그 다음 수’는 무정의 용어이다. (primitive notion, 더는 정의를 할 수 없는 근본 원리)

Thm. [수학적 귀납법]

n' = n + 1 이라 정의할 때, 명제 P(n) 에 대하여 두 조건

  1. P(1) 이 참
  2. P(n) 이 참 P(n+1) 이 참

이 성립하면 P(n) 은 모든 자연수 n 에 대하여 참이다.

(수학적 귀납법의 이론적 근거가 페아노 공리계의 5번째 공리)

자연수의 성질

  1. 정렬성
    • 자연수집합 \mathbb{N} 의 공집합이 아닌 부분집합은 항상 최소원소를 갖는다.
  2. 자연수 집합 \mathbb{N} 은 위로 유계가 아니다.
  3. 아르키메데스 성질
    • \forall \epsilon > 0, \exists n \in \mathbb{N} s.t. {1 \over n} < \epsilon
    • 어떤 양수든 그보다 더 작은 유리수가 적어도 1개 존재한다
  • 정리란 참인 명제
  • 성질은 정리로부터 자연스럽게 파생되는 것들
  • 법칙은 연산의 규칙

유리수와 무리수

  • 바빌로니아인들이 유리수를 사용했다는 증거가 있음
  • 무리수는 기원전 500년경 등장

집합의 구성

  1. 정수 집합
    • \mathbb{Z} = (-\mathbb{N}) \cup \{ 0 \} \cup \mathbb{N}
  2. 유리수 집합
    • \mathbb{Q} = \{ {m \over n} | m, n \in \mathbb{Z}, n \neq 0 \}
  3. 무리수 집합
    • \mathbb{I} = \mathbb{R} - \mathbb{Q} 

(위는 간략한 표현일 뿐 엄밀한 정의는 아님)

조밀성

Thm 1. [유리수의 조밀성]

\forall a, b \in \mathbb{R}, a < b \Rightarrow \exists r \in \mathbb{Q} s.t. a < r < b

어떤 두 실수 사이에도 유리수가 적어도 1개 존재한다.

증명)

  • case 1) 0 < a < b
    • a < b \Leftrightarrow 0 < b - a \Rightarrow \exists n \in \mathbb{N} (s.t. {1 \over n} < b - a) (아르키메데스 성질)
    • Let. S = \{ m \subseteq \mathbb{N} | m > na \} Then. S \neq \phi (위로 유계 아님 성질)
    • \therefore S (\subseteq \mathbb{N}) 의 최소원소는 m (정렬성 성질)
    • m > na \Leftrightarrow a < {m \over n}
    • m - 1 \notin S \Rightarrow m - 1 \leq na \Rightarrow {m - 1 \over n} \leq a
    • \therefore a < {m \over n} = {m -1 \over n} + {1 \over n} \leq a + {1 \over n} < b
  • case 2) a < 0 < b
    • 0이 유리수이므로 자명 trivial
  • case 3) a < b < 0
    • \Rightarrow 0 < -b < -a
    • \Rightarrow 0 < -b < -a
    • \therefore r \in \mathbb{Q} (s.t. - b < r < -a, \because case 1)
    • \Rightarrow a < -r < b

Thm 2. [무리수의 조밀성]

\forall a, b \in \mathbb{R}, a < b \Rightarrow \exists s \in \mathbb{I} s.t. a < s < b

어떤 두 실수 사이에도 무리수가 적어도 1개 존재한다.

증명)

  • a < b
    • \Rightarrow a + \sqrt{2} < b + \sqrt{2}
    • \exists r \in \mathbb{Q} s.t. a + \sqrt{2} < r <  b + \sqrt{2}
      • (유리수 조밀성, 어떤 두 실수 사이에도 유리수가 유리수 r 이 존재)
    • Let. s = r - \sqrt{2} \in \mathbb{I}
    • Then. a + \sqrt{2} < r < b + \sqrt{2} \Rightarrow a < s < b

실수

  • 히파소스가 수론적인 접근이 아니라 직각 이등변 삼각형을 이용해서 무리수를 발견하자. 그 전까지는 수론적인 논의가 융성했던 수학 흐름이 기하학으로 넘어감.
  • 그러나 기하적인 수 체계의 정의는 직관에 기댄 것이기 때문에 현대 수학에 이르러 수학적 엄밀성을 위해 실수 체계에 대한 공리가 만들어짐.

체 공리

집합 S S 에 부여된 두 이항연산 +, \cdot 가 다음 9개의 공리를 만족하면, 대수구조 (S, + \cdot) 를 체라 한다.

  1. x, y \in S \Rightarrow x + y = y + x
    • 덧셈에 대한 교환법칙
  2. x, y, z \in S \Rightarrow x + (y + z) = (x + y) + z
    • 덧셈에 대한 결합법칙
  3. \forall x \in S, \exists 0 \in S s.t. 0 + x = x
    • 덧셈에 대한 항등원
  4. \forall x \in S, \exists -x \in S s.t. x + (-x) = 0
    • 덧셈에 대한 역원 (연산 결과가 항등원이 나오게 하는 것)
  5. x, y \in S \Rightarrow x \cdot y = y \cdot x
    • 곱셈에 대한 교환법칙
  6. x, y, z \in S \Rightarrow x \cdot (y \cdot z) = (x \cdot y) \cdot z
    • 곱셈에 대한 결합법칙
  7. \forall x \in S, \exists 1(\neq 0) S s.t. 1 \cdot x = x
    • 곱셈에 대한 항등원. 곱셈의 항등원과 덧셈의 항등원이 달라야 하는 것이 공리
  8. \forall x (\neq 0) \in S, \exists x^{-1} \in S s.t. x \cdot (x^{-1}) = 1
    • 곱셈에 대한 역원
  9. x, y, z \in S \Rightarrow x \cdot (y + z) = x \cdot y + x \cdot z
    • 덧셈과 곱셈에 대한 분배법칙

(\mathbb{Q}, +, \cdot) (\mathbb{R}, +, \cdot) 는 모두 체다. (유리수 체, 실수 체)

  • 체 공리는 실수의 대수적 성질에 대한 것
  • 집합에 연산을 부여한 것을 대수적 구조라고 한다.
  • 이항연산은 집합 내의 원소들에 대해 연산을 한 결과가 집합 내에 존내하는 연산을 의미 –닫혀있는 연산

순서공리

순서 공리

\mathbb{R} 에는 다음 두 조건을 만족하는 공집합이 아닌 부분집합 P 가 존재한다.

  1. \forall x, y \in P, x + y \in P \wedge xy \in P
    • 집합 원소 간 덧셈과 곱셈이 모두 집합 내에 존재. 덧셈과 곱셈에 대해 닫힌 집합
  2. 임의의 x \in \mathbb{R} 에 대하여 다음 중 단 하나만 성립한다.
    1. x \in P
    2. x = 0
    3. -x \in P

위 조건을 만족하면 P 는 양의 실수 집합이 됨

삼분성질

Def. [부등식의 정의]

임의의 a, b \in \mathbb{R} 에 대하여

  1. a - b \in P \Rightarrow a > b \vee b < a
  2. a - b \in P \cup \{ 0 \} \Rightarrow a \geq b \vee b \leq a

순서 공리로부터 부등식을 정리함. P 는 양의 실수 집합이기 때문에 위와 같이 됨.

Thm. [삼분성질]

임의의 a, b \in \mathbb{R} 에 대하여 다음 중 단 하나만 성립한다.

  1. a > b
  2. a = b
  3. a < b

완비성 공리

  • Completeness. 연속성 공리라고도 함. 유리수의 조밀성을 뛰어넘는 실수의 조밀성.

완비성 공리

\mathbb{R} 의 공집합이 아닌 부분집합이 위로 유계이면 그 부분집합은 상한을 갖는다. (완비성 공리를 만족한다는 것은 부분집합의 상한을 원래 집합 내에서 잡을 수 있다는 것)

Def. [상한] 부분순서집합 A 의 부분집합 B 의 상계들의 집합이 최소원소를 가질 때 그 최소원소를 B 의 상한이라 하고 sup B 로 나타낸다.

유리수 집합은 완비성 공리를 만족하지 못함

주요 정리

Thm 1. 상한은 유일하다.

Thm 2. s \in \mathbb{R} 가 집합 S 의 상계일 때 다음 세 명제는 동치이다.

  1. s = sup S
  2. \forall \epsilon > 0, \exists x \in S s.t. s - \epsilon < x \leq s
  3. \forall \epsilon > 0, S \cap ( s - \epsilon, s ] \neq \phi

Thm 3. \mathbb{Q} 는 완비성을 갖지 않는다.

완비성 공리로부터 ‘1. 자연수 > (2) 자연수의 성질 > 2’도 증명 가능하다.

완비성의 예 – 무한소수

위로 유계인 임의의 무한소수 부분집합을 A 라 하자 이제

a_{0} = max \{ x_{0} | x_{0}. x_{1} x_{2} x_{3} ... \in A \}

a_{1} = max \{ x_{1} | a_{0}. x_{1} x_{2} x_{3} ... \in A \}

...

a_{k} = max \{ x_{k} | a_{0}. a_{1} ... a_{k-1} x_{k} x_{k+1} ... \in A \}

라 하면, 무한소수 a_{0}. a_{1} a_{2} a_{3} ... 은 집합 A 의 상한이다. 즉, 무한소수의 집합은 완비성 공리를 만족한다.

실수는 완비성, 순서성을 만족하는 체. 완비순서체라고도 한다.

이상엽/ 해석학/ 집합론 복습

집합

  • 현대 수학은 공리 –약속된 명제– 들로부터 논리를 쌓아가는 학문.
  • 수학의 가장 기본이 되는 공리계인 ZFC가 10개의 집합에 대해 서술하고 있음.
  • 대부분의 수학적 대상은 모두 집합으로 정의가 됨.
    • 사칙연산은 함수의 일종이고 함수는 집합으로 정의가 됨.

정의

다음 성질들을 만족시키는 원소 x 들의 모임을 집합이라 한다. (아래는 소박한 정의, 현대적 정의는 공리계가 따로 있음)

  1. 집합에 속하거나 속하지 않거나 둘 중 하나로써 명확하다.
  2. 원소들끼리는 서로 다르다.
  3. 원소들끼리는 순서에 따른 구분이 없으며, 연산이 주어지지 않는다.
  • x 가 집합 X 의 원소이면 x \in X 로 표현하고 원소가 아니면 x \notin X 로 표현한다.
  • 집합 U 의 원소 중에서 명제 P 를 만족시키는 원소로 이루어진 집합 X 를 조건제시법으로 X = \{ x \in U | P(x) \} 라 표현하며, 이때 U 를 전체집합이라 한다.
  • 공집합은 아무런 원소를 가지지 않는 집합이며, 기호로 \phi 라 표현한다.

집합의 연산

합집합

집합 I = \{ 1, 2, ... , n \} 에 대하여 집합들 A_{i} (i \in I) 의 합집합은 (여기서 i 는 첨수라 하고 그 첨수들 모은 집합인 I 를 첨수족이라 한다)

\cup_{i \in I} A_{i} = \{ x | \exists i \in I s.t. x \in A_{i} \}

이고 특히 두 집합 A B 의 합집합을

A \cup B = \{ x | x \in A \vee x \in B \}

라 표현한다.

교집합

집합 I = \{ 1, 2, ... , n \} 에 대하여 집합들 A_{i} (i \in I) 의 교집합은

\cap_{i \in I} A_{i} = \{ x | \forall i \in I s.t. x \in A_{i} \}

이고 특히 두 집합 A B 의 교집합을

A \cap B = \{ x | x \in A \wedge x \in B \}

라 표현한다.

곱집합

집합 I = \{ 1, 2, ... , n \} 에 대하여 집합들 A_{i} (i \in I) 의 곱집합은 (데카르트곱 또는 카테시안곱이라고 한다. 카테시안은 데카르트의 라틴어 표현)

\Pi_{i \in I} A_{i} = \{ (x_{i})_{i \in I} | \forall i \in I s.t. x \in A_{i} \}

  • 여기서 (x_{i})_{i \in I} 는 튜플이라고 한다. 순서쌍이라고도 하는데 순서쌍은 원소가 2개짜리 튜플을 의미.
  • 튜플이란 여러 개 원소를 순서 있게 나열한 것.

이고 특히 두 집합 A B 의 곱집합을

A \times B = \{ (x_{1}, x_{2}) | x_{1} \in A \wedge x_{2} \in B \}

라 표현한다.

차집합

집합 A 에 속하지만 집합 B 에는 속하지 않는 원소의 집합을

A - B = \{ x | x \in A \wedge x \notin B \} = A \cap B^{c}

라 표현하며, A B 의 차집합이라 한다.

전체집합 U 에 대하여 U - A = A^{c} 라 표현하며 A 의 여집합이라 한다.

  • 다음이 성립한다.
    • 드모르간 법칙
      • (\cup_{i \in I} A_{i})^{c} = \cap_{i \in I} A_{i}^{c}
      • (\cap_{i \in I} A_{i})^{c} = \cup_{i \in I} A_{i}^{c}
    • 분배 법칙
      • A \cap (\cup_{i \in I} B_{i}) = \cup_{i \in I} (A \cap B)
      • A \cup (\cap_{i \in I} B_{i}) = \cap_{i \in I} (A \cup B)
      • A \times (B \cap C) = (A \times B) \cap (A \times C)
      • A \times (B \cup C) = (A \times B) \cup (A \times C)
      • A \times (B - C) = (A \times B) - (A \times C)

포함관계

  • 만약 집합 A 에 속하는 모든 원소가 집합 B 의 원소이기도 하면 A \subseteq B 라 표현하며, A B 의 부분집합이라 한다.
  • 만약 A \subseteq B 이면서 동시에 B \subseteq A 이면 A = B 라 표현하며, A B 가 서로 같다고 한다.
  • 만약 A \subseteq B 이면서 A \neq B 이면 A \subset B 라 표현하며, A B 의 진부분집합이라 한다.
  • 집합 A 의 모든 부분집합들의 집합을 P(A) 라 표현하며 A 의 멱집합이라 한다. (P는 Power Set)
  • 집합 기호
    • \mathbb{N} : 모든 자연수의 집합
    • \mathbb{Z} : 모든 정수의 집합
    • \mathbb{Q} : 모든 유리수의 집합
    • \mathbb{R} : 모든 실수의 집합
    • \mathbb{C} : 모든 복수수의 집합

함수

정의

두 집합 X, Y 에 대하여 아래 두 조건을 만족하는 X \times Y 의 부분집합 f 를 함수라 한다. (두 집합의 곱집합의 부분집합이 함수가 됨)

  • \forall x \in X, \exists y \in Y, s.t. (x, y) \in f
    • (모든 x y 값을 갖는다)
  • (x, y_{1}) \in f \wedge (x, y_{2}) \in f \Rightarrow y_{1} = y_{2}
    • (x y 값을 1개만 갖는다)

이때 함수를 f : X \to Y 라 표현하며, (x, y) \in f 이면 y = f(x) 라 표현한다.

  • 집합 A \subseteq X 및 함수 f : X \to Y 에 대하여 f(A) = \{ f(a) | a \in A \} A 의 상(Image)이라 한다.
  • 집합 B \subseteq Y 및 함수 f: : X \to Y 에 대하여 f^{-1}(B) = \{ x \in X | f(x) \in B \} B 의 원상(Pre Image)이라 한다.
  • f : X \to Y 에서 X 를 정의역(Domain) Dom(f) , Y 를 공역(Codomain) f(X) = \{ f(x) | x \in X \} 를 치역(Range) Rng(f) 라 한다.

함수의 종류

함수 f : X \to Y 에 대하여

  • 전사: Rng(f) = Y
    • (치역 = 공역, 남는 y 가 없다)
  • 단사: x_{1} \neq x_{2} \in X \Rightarrow f(x_{1}) \neq f(x_{2})
    • (y x 를 1개씩 갖는다)
  • 전단사: 전사이고 단사인 함수. 일대일대응이라고도 한다.

  • 1
    • Y 에 남는 값이 있기 때문에 전사가 아님
    • Y 에 2개의 화살을 받는 값이 있으므로 단사가 아님
    • 고로 전사도 단사도 아님
  • 2
    • Y 에 남는 값이 있기 때문에 전사가 아님
    • Y 에 2개의 화살을 받는 값이 없으므로 단사가 됨
    • 고로 단사지만 전사는 아님. 단사 함수.
  • 3
    • Y 에 남는 값이 없기 때문에 전사가 됨
    • Y 에 2개의 화살을 받는 값이 있으므로 단사가 아님
    • 고로 전사지만 단사는 아님. 전사 함수
  • 4
    • Y 에 남는 값이 없기 때문에 전사가 됨
    • Y 에 2개의 화살을 받는 값이 없으므로 단사가 됨
    • 고로 전단사(일대일 대응) 함수가 됨.

여러 가지 함수

  • 항등함수: \forall x \in X, I_{X}(x) = x
    • (자기 자신이 그대로 나오는 함수)
  • 상수함수: \exists y_{0} \in Y, f(X) = y_{0}
    • (어떠한 값을 넣어도 항상 상수가 나옴)
  • 역함수: 전단사인 f : X \to Y 에 대해 f^{-1} : Y \to X
    • (함수를 뒤집은 함수인데, 전단사여야만 역함수가 가능)
  • 합성함수: 두 함수 f : X \to Y, g : Y \to Z \forall x \in X, (g \circ f)(x) = g(f(x))

집합의 크기

정의

  • 집합의 크기란 집합의 원소 개수에 대한 척도이다.
  • 두 집합 X, Y 에 대하여 전단사함수 f : X \to Y 가 존재하면 X Y 는 동등이며, X \approx Y 라 표현한다.
  • 집합 X 의 적당한 진부분집합 Y X 와 동등하면 X 는 무한집합이다.
  • 무한집합이 아닌 집합을 유한집합이라 한다.
  • 집합 X X \approx \mathbb{N} 일 때 X 를 가부번집합이라 한다.
  • 유한집합이나 가부번집합을 가산집합이라 한다.
  • 가부번집합이 아닌 무한집합을 비가산집합이라 한다.

여러 가지 정리

  • \mathbb{N} \approx \mathbb{Z} \approx \mathbb{Q}
  • \mathbb{R} 는 비가부번집합이다.
  • \mathbb{R} \approx \mathbb{R} - \mathbb{Q} \approx \mathbb{C}
  • 칸토어의 정리: 공집합이 아닌 임의의 집합 X 에 대하여 P(X) 의 크기는 X 의 크기보다 크다.
  • P(\mathbb{N}) \approx \mathbb{R}

순서관계

  • (기본적인 집합에 연산구조, 순서구조, 위상구조 등을 부여할 수 있음)

순서집합

아래 조건들을 만족하는 집합 X 위의 이항 관계 \leq 를 부분순서관계라 한다.

  1. \forall x \in X, x \leq x
    • (반사적, reflexive)
  2. \forall x, y, z \in X, x \leq y \leq z \Rightarrow x \leq z
    • (추이적, transitive)
  3. \forall x, y \in X, x \leq y \leq x \Rightarrow x = y
    • (반대칭적, antisymmetric)
  • 부분순서관계 \leq 를 갖춘 집합을 부분순서집합이라 한다.
  • 부분순서집합 X 의 어떤 두 원소 x, y x \leq y \vee y \leq x 을 만족하면 x y 는 비교가능하다고 한다.
  • 부분순서집합 X 의 임의의 두 원소가 비교가능하면 X 를 전순서집합이라 한다.

상(하)계, 극대(소), 최대(소)

부분순서집합 X 의 부분집합 A 에 대하여

  • \forall a \in A, a \leq x 를 만족하는 x \in X A 의 상계(upper bound)라 한다.
  • 상계가 존재하는 A 를 ‘위로 유계(bounded)이다’라고 한다.
  • 위로 유계이면서 동시에 아래로 유계인 집합을 유계집합이라 한다.
  • a > m a \in A 가 존재하지 않을 때 m \in A A 의 극대원소라 한다.
  • \forall a \in A, a \leq g g \in A A 의 최대원소라 한다.

각 항목의 부등호 방향을 바꿔주면 각각 하계(lower bound), 아래로 유계, 유계집합, 극소원소, 최소원소의 정의가 된다.

  • 집합 A의
    • 상계: l, m, n
    • 최소상계: l
    • 하계: a, d, e, f
    • 최대하계: 없음
    • 극대: j, k
    • 극소: g
    • 최대: 없음
    • 최소: g

이상엽/ 선형대수학/ 자료의 처리

우선순위 평가

인접행렬

개념

요소간의 연결 관계를 나타내는 정사각 행렬

  • 참조한 (화살표가 나가는) 쪽은 행에, 참조된 (화살표를 받는) 쪽은 열에 쓴다.
    • 1은 2와 3으로 화살표를 쏘고 있으므로, 1행은 2열과 3열에 값이 있음.

권위벡터와 허브벡터

n \times n 인접행렬 A = (a_{ij}) 에 대하여

\left( \begin{array}{rrrr} \sum_{i = 1}^{n} a_{i1} \\ \sum_{i = 1}^{n} a_{i2} \\ ... \\ \sum_{i = 1}^{n} a_{in} \end{array} \right) \left( \begin{array}{rrrr} \sum_{j = 1}^{n} a_{1j} \\ \sum_{j = 1}^{n} a_{2j} \\ ... \\ \sum_{j = 1}^{n} a_{nj} \end{array} \right) 을 각각 A 의 권위벡터와 허브벡터라 하며, 각 벡터의 성분을 권위 가중치와 허브가중치라 한다.

  • 가중치로부터 중요도를 판단한다는게 아이디어
    • 권위 벡터(u_{0} )는 연관받은 (열) 데이터에 대한 벡터가 된다. 그 각각의 값은 권위 가중치가 된다.
    • 허브 벡터(v_{0} )는 연관한 (행) 데이터에 대한 벡터가 된다. 그 각각의 값은 허브 가중치가 된다.
  • 권위 벡터와 허브 벡터는 상호작용을 기반으로 계속 값이 업데이트 된다.
    • 업데이트 되는 와중에 어떤 기준선에 도달하여 값이 안정되면 최종적으로 그 벡터를 중요도 평가에 사용한다.

순위평가 원리

인접행렬 A 와 초기권위벡터 u_{0} 와 초기허브벡터 v_{0} 에 대하여

u_{k} = \begin{cases} u_{0} & k =0 \\ {A_{v_{k}}^{T} \over \|A_{v_{k}}^{T}\|} & k > 0 \end{cases},  v_{k} = \begin{cases} v_{0} & k =0 \\ {A_{v_{k-1}} \over \|A_{v_{k-1}}\|} & k > 0 \end{cases}

  • 현재 권위 벡터는 이전 허브 벡터의 값을 원본 행렬(의 전치 행렬)에 곱하여 구하고, 마찬가지로 현재 허브 벡터는 이전 권위 벡터의 값을 원본 행렬에 곱하여 구한다.
    • 이 곱을 반복하여 값을 업데이트 한다.
  • 다만 이것을 점화식을 이용해서 구성하면 자기 자신만 보면 되는 (권위 벡터는 권위 벡터만으로, 허브 벡터는 허브 벡터만으로) 해석적인 결과가 구성되고, 이를 컴퓨터에 넣어서 계속 돌리면 값이 나온다.

와 같이 새로운 정규화된 권위벡터 u_{k} 와 허브벡터 v_{k} 를 정의한다. (k 는 정수)

이때 u_{k}, v_{k} 를 연립하면 다음과 같이 정규화된 u_{k} v_{k} 의 점화식을 얻을 수 있다.

u_{k} = {A_{v_{k}}^{T} \over \|A_{v_{k}}^{T}\|} = {A^{T}({A_{u_{k-1}} \over \|A_{u_{k-1}}\|}) \over \|A^{T}({A_{u_{k-1}} \over \|A_{u_{k-1}}\|})\|} = {(A^{T}A)_{u_{k-1}} \over \|(A^{T}A)_{u_{k-1}}\|}

마찬가지로 v_{k} = {(AA^{T})_{v_{k-1}} \over \|(AA^{T})_{v_{k-1}}\|}

이 벡터들이 안정화가 되었다고 판단되는 상태로부터 각각 최종 중요도를 판별한다.

사례

10개의 인터넷 페이지(ㄱ~ㅊ)들 간의 인접행렬 $latex A &s=2가 다음과 같다고 하자.

앞에서 소개된 절차에 따라 $latex A &s=2의 정규화된 권위벡터가 안정화 될 때까지 반복계산한 결과는 다음과 같다.

  • 위 수식은 소숫점 4자리까지만 연산하는데, u_{9}, u_{10} 에 도달하면 값의 차이가 없기 때문에 더는 연산을 하지 않고 멈춘다.
    • 만일 소숫점 자리를 5자리 이상으로 보면 더 돌 수 있다.

따라서 $latex A &s=2 권위가중치로부터 페이지 ㄱ, ㅂ, ㅅ, ㅈ는 관련이 적고, 그 외의 페이지는 중요도가 높은 것부터 ㅁ > ㅇ > ㄴ > ㅊ > ㄷ = ㄹ 순서대로 검색엔진에서 노출되어야 함을 알 수 있다.

  • 요게 바로 구글 페이지 랭크 연산 방식
  • 주요 키워드) 거듭제곱법(power method), 우세 고유벡터/값(dominant eigen vector/value)

자료압축

특잇값 분해

분해

한 행렬을 여러 행렬들의 곱으로 표현하는 것

ex) QR  분해, LU 분해, LDU 분해, 고윳값 분해, 헤센버그 분해, 슈르 분해, 특잇값 분해 등

특잇값

m \times n 행렬 A 에 대하여 \lambda_{1}, \lambda_{2}, ... , \lambda_{n} A^{T}A 의 고윳값일 때

\sigma_{1} = \sqrt{\lambda_{1}}, \sigma_{2} = \sqrt{\lambda_{2}}, ... \sigma_{n} = \sqrt{\lambda_{n}}

A 의 특잇값이라 한다.

  • 고윳값을 만들려면 정사각 행렬이어야 한다. 반면 특잇값은 임의의 행렬에서도 만들어낼 수 있음.
    • 일반적인 행렬을 정사각 행렬로 만들기 위해  m \times n 행렬 A 에 대하여 A^{T}A 를 한 후 거기서 특이값을 추출한다.

ex) 행렬 A = \left( \begin{array}{rrr} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right) 에 대하여

A^{T}A = \left( \begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right) \left( \begin{array}{rrr} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right) = \left( \begin{array}{rr} 2 & 1 \\ 1 & 2 \end{array} \right) 이므로

A^{T}A 의 고유방정식은 \lambda^{2} - 4 \lambda + 3 = (\lambda - 1)(\lambda - 3) = 0 이다

따라서 A 의 두 특잇값은 각각 \sqrt{3}, 1 이다.

특잇값 분해

영행렬이 아닌 임의의 m \times n 행렬 A 는 다음과 같이 나타낼 수 있다.

A = U \Sigma V^{T}

이때 U, V 는 직교행렬이며, A 는 주대각성분이 \Sigma 의 특잇값이고 나머지 성분들은 0 m \times n 행렬이다.

  • 여기서 \Sigma 는 합을 의미하는 것이 아니라 \sigma 의 대문자 형태이다. (벡터를 의미하는 \sigma 의 행렬 형태)

ex) 행렬 A = \left( \begin{array}{rrr} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right) 는 다음과 같이 특잇값 분해된다.

\left( \begin{array}{rrr} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right) = \left( \begin{array}{rrr} {\sqrt{6} \over 3} & 0 & - {1 \over \sqrt{3}} \\ {\sqrt{6} \over 6} & -{\sqrt{2} \over 2} & {1 \over \sqrt{3}} \\ {\sqrt{6} \over 6} & {\sqrt{2} \over 2} & {1 \over \sqrt{3}} \end{array} \right) \left( \begin{array}{rrr} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right) \left( \begin{array}{rr} {\sqrt{2} \over 2} & {\sqrt{2} \over 2} \\ {\sqrt{2} \over 2} & -{\sqrt{2} \over 2} \end{array} \right)

축소된 특잇값 분해

특잇값 분해에서 0 인 성분들로만 이루어진, 대수적으로 무의미한 행 또는 열을 제거한 형태를 축소된 특잇값 분해라고 한다.

즉, A = U_{1} \Sigma_{1} V_{1}^{T} = (u_{1}, u_{2}, ... , u_{k}) \left( \begin{array}{rrrr} \sigma_{1} & 0 & ... & 0 \\ 0 & \sigma_{2} & ... & 0 \\ ... & ... & ... & ... \\ 0 & 0 & ... & \sigma_{k} \end{array} \right) \left( \begin{array}{rrrr} v_{1}^{T} \\ v_{2}^{T} \\ ... \\ v_{k}^{T} \end{array} \right)

또한 축소된 특잇값 분해를 이용하여 행렬 A 를 다음과 같이 전개한 것을 A 의 축소된 특잇값 전개라 한다.

A = \sigma_{1}u_{1}v_{1}^{T} + \sigma_{2}u_{2}v_{2}^{T} + ... + \sigma_{k}u_{k}v_{k}^{T} 

ex)

\left( \begin{array}{rrr} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right) = \left( \begin{array}{rrr} {\sqrt{6} \over 3} & 0 & - {1 \over \sqrt{3}} \\ {\sqrt{6} \over 6} & -{\sqrt{2} \over 2} & {1 \over \sqrt{3}} \\ {\sqrt{6} \over 6} & {\sqrt{2} \over 2} & {1 \over \sqrt{3}} \end{array} \right) \left( \begin{array}{rrr} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right) \left( \begin{array}{rr} {\sqrt{2} \over 2} & {\sqrt{2} \over 2} \\ {\sqrt{2} \over 2} & -{\sqrt{2} \over 2} \end{array} \right)

= \left( \begin{array}{rrr} {\sqrt{6} \over 3} & 0 \\ {\sqrt{6} \over 6} & -{\sqrt{2} \over 2} \\ {\sqrt{6} \over 6} & {\sqrt{2} \over 2} \end{array} \right) \left( \begin{array}{rr} \sqrt{3} & 0 \\ 0 & 1 \end{array} \right) \left( \begin{array}{rr} {\sqrt{2} \over 2} & {\sqrt{2} \over 2} \\ {\sqrt{2} \over 2} & -{\sqrt{2} \over 2} \end{array} \right)

= \sqrt{3}u_{1}v_{1}^{T} + u_{2}v_{2}^{T}

자료압축 원리

압축되지 않은 m \times n 행렬 A 를 위한 필요 저장 공간은 mn 이다.

A 를 축소된 특잇값 분해한 결과가 A = \sigma_{1}u_{1}v_{1}^{T} + \sigma_{2}u_{2}v_{2}^{T} + ... + \sigma_{k}u_{k}v_{k}^{T}  라면

이제 필요한 저장 공간은 k + km + kn = k(1 + m + n) (\sigma_{1} \geq \sigma_{2} \geq ... \geq \sigma_{k}) 이다.

  • k 는 특잇값 개수 = \Sigma 의 행개수 or 열개수
  • m U 의 행 개수 = u_{i} 의 성분개수
  • n V^{T} 의 열 개수 = v_{i}^{T} 의 성분개수

충분히 작다고 판단되는 \sigma_{r+1}, ... \sigma_{k} 에 대응하는 항들을 추가로 제거하면, 이때 필요한 저장 공간은 r(1 + m + n) 뿐이다.

이상엽/ 선형대수학/ 최적화 문제

곡선 적합

보간법

개념

주어진 특징 점들을 포함하는 함수를 구하는 방법

정리) 좌표평면에 있는 임의의 서로 다른 n 개의 점을 지나는 k 차 다항함수는 유일하게 존재한다. (단 k k < n 인 자연수)

사례

네 점 (1, 3), (2, -2), (3, -5), (4, 0) 을 모두 지나는 3차 함수

f(x) = a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3}

를 구하자. 우선 다음의 방정식을 세운다.

Step 1)

\left( \begin{array}{rrrr} 1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\ 1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\ 1 & x_{3} & x_{3}^{2} & x_{3}^{3} \\ 1 & x_{4} & x_{4}^{2} & x_{4}^{3} \end{array} \right) \left( \begin{array}{rrrr} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{array} \right) = \left( \begin{array}{rrrr} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{array} \right)

Step 2) 네 점을 대입하고 첨가행렬을 만든다.

\left( \begin{array}{rrrrr} 1 & 1 & 1 & 1 & 3 \\ 1 & 2 & 4 & 8 & -2 \\ 1 & 3 & 9 & 27 & -5 \\ 1 & 4 & 16 & 64 & 0 \end{array} \right)

Step 3) 첨가행렬을 가우스-조던 소거법을 이용하여 풀이한다.

\left( \begin{array}{rrrrr} 1 & 1 & 1 & 1 & 3 \\ 1 & 2 & 4 & 8 & -2 \\ 1 & 3 & 9 & 27 & -5 \\ 1 & 4 & 16 & 64 & 0 \end{array} \right) \Rightarrow \left( \begin{array}{rrrrr} 1 & 0 & 0 & 0 & 4 \\ 0 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & -5 \\ 0 & 0 & 0 & 1 & 1 \end{array} \right)

Step 4) 

a_{0} = 4, a_{1} = 3, a_{2} = -5, a_{3} = 1 이므로 f(x) = 4 + 3 x - 5 x^{2} + x^{3} 이다.

  • 곡선 접합은 현재 가진 데이터에 대해 분석은 잘 할 수 있지만, 신규 데이터가 현재 그려 놓은 곡선 위에 존재한다는 보증이 없음. 유연성이 매우 떨어진다.
    • 애초에 데이터를 모두 포함하는 함수가 존재하지 않는 경우도 많음.

최소제곱법

  • 곡선 접합의 단점을 보완할 수 있는 방법.
  • 가우스가 창안한 방법으로 가우스는 이 방법을 통해 소행성 ‘세레스’ 의 궤도를 정확히 예측해 냄.

개념

특징 점들을 포함하는 함수를 특정 지을 수 없을 때, 실제 해와의 오차 제곱 합이 최소가 되는 근사적인 해를 구하는 방법

정리) 방정식 Ax = B 을 변형한 방정식 A^{T}Ax = A^{T}B (정규방정식)의 모든 해는 Ax = B 의 최소제곱해이다.

  • 요게 결국 선형회귀이다.
  • A^{T}Ax = A^{T}B (정규방정식)의 모든 해는 Ax = B 의 최소제곱해이라는 부분은 증명이 복잡하므로 강의 상에서는 생략.

사례

네 점 (0, 1), (1, 3), (2, 4), (3, 4) 에 근사하는 일차 함수 f(x) = a_{0} + a_{1} x 을 구하자. 우선 다음의 방정식을 세운다.

Step 1) Ax = B

\Leftrightarrow \left( \begin{array}{rrrr} 1 & x_{1} \\ 1 & x_{2} \\ 1 & x_{3} \\ 1 & x_{4} \end{array} \right) \left( \begin{array}{rr} a_{0} \\ a_{1} \end{array} \right) = \left( \begin{array}{rrrr} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{array} \right)

Step 2) 네 점을 대입하고 정규방정식 A^{T}Ax = A^{T}B 으로부터 방정식 x = (A^{T}A)^{-1} A^{T}B 을 구성한다.

A^{T}A = \left( \begin{array}{rr} 4 & 6 \\ 6 & 14  \end{array} \right) 이므로

(A^{T}A)^{-1} = \left( \begin{array}{rr} 4 & 6 \\ 6 & 14  \end{array} \right)^{-1} = {1 \over 10} \left( \begin{array}{rr} 7 & -3 \\ -3 & 2  \end{array} \right)  

\therefore x = {1 \over 10} \left( \begin{array}{rr} 7 & -3 \\ -3 & 2  \end{array} \right) \left( \begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3  \end{array} \right) \left( \begin{array}{rrrr} 1 \\ 3 \\ 4 \\ 4  \end{array} \right)

Step 3) x = \left( \begin{array}{rr} a_{0} \\ a_{1}  \end{array} \right) = \left( \begin{array}{rr} {2 \over 3} \\ 1 \end{array} \right) 이므로 구하고자 하는 함수는 f(x) = {3 \over 2} + x 이다.

n차 일반화

m 개의 자료점 (x_{1}, y_{1}), (x_{2}, y_{2}), ... , (x_{m}, y_{m}) 에 대해 n 차 다항식 y = a_{0} + a_{1} x + ... + a_{n} x^{n} 을 최소제곱법을 이용하여 근사하기 위해서는 Ax = B

A = \left( \begin{array}{rrrr} 1 & x_{1} & ... & x_{1}^{n} \\ 1 & x_{2} & ... & x_{2}^{n} \\ ... & ... & ... & ... \\ 1 & x_{m} & ... & x_{m}^{n} \end{array} \right), x = \left( \begin{array}{rrrr} a_{0} \\ a_{1} \\ ... \\ a_{n} \end{array} \right), B = \left( \begin{array}{rrrr} y_{1} \\ y_{2} \\ ... \\ y_{m} \end{array} \right)

로 설정하면 된다.

두 방법의 비교

  보간법 최소제곱법
목표 데이터를 모두 포함하는 함수 데이터의 경향을 반영하는 함수
데이터의 수 적을 수록 좋음 많아도 무방함
정밀도 매우 높음 상대적으로 낮음
신축성 조절이 어려움 조절이 자유로움

이차형식의 최적화

이차형식

가환환 K 위의 가군 V 에 대해 다음 세 조건을 만족시키는 함수 Q : V \to K

  • \forall k, l \in K, \forall u, v, w \in V
    • Q(kv) = k^{2} Q(v)
    • Q(u + v + w) = Q(u + v) + Q(v+w) + Q(u+w) - Q(u) - Q(v) - Q(w)
    • Q(kv + lv) = k^{2} Q(u) + l^{2} Q(v) + kl Q(u+v) - klQ(u) - klQ(v)

ex 1) R^{2} 상의 일반적인 이차형식은 다음과 같다.

a_{1}x_{1}^{2} + a_{2}x_{2}^{2} + 2a_{3}x_{1}x_{2} \Leftrightarrow \left( \begin{array}{rr} x_{1} & x_{2} \end{array} \right) \left( \begin{array}{rr} a_{1} & a_{3} \\ a_{3} & a_{2} \end{array} \right) \left( \begin{array}{rr} x_{1} \\ x_{2}  \end{array} \right)

ex 2) R^{3} 상의 일반적인 이차형식은 다음과 같다.

a_{1}x_{1}^{2} + a_{2}x_{2}^{2} + a_{3}x_{3}^{2} +  2a_{4}x_{1}x_{2} + 2a_{5}x_{1}x_{3} + 2a_{6}x_{2}x_{2}

\Leftrightarrow \left( \begin{array}{rrr} x_{1} & x_{2} & x_{3} \end{array} \right) \left( \begin{array}{rrr} a_{1} & a_{4} & a_{5} \\ a_{4} & a_{2} & a_{6} \\ a_{5} & a_{6} & a_{3} \end{array} \right) \left( \begin{array}{rrr} x_{1} \\ x_{2} \\ x_{3} \end{array} \right)

제약된 극값

개념

특정 제약 하에 결정되는 원하는 식의 최댓값 또는 최솟값

정리) n \times n 행렬 A 의 고윳값을 큰 순서대로 \lambda_{1}, \lambda_{2}, ... , \lambda_{n} 이라 하자. 이때 \|v\| = 1 제약 하에 v^{T}Av 의 최댓(솟)값은 \lambda_{1} (\lambda_{n}) 에 대응하는 단위고유벡터에서 존재한다.

사례

제약 x^{2} + y^{2} = 1 하에서

  • 위 제약 조건은 \vec{v} = (x, y) 로 정한 것과 같다. \|v\| = 1 이 된다.

z = 5 x^{2} + 5 y^{2} + 4xy

의 최댓값과 최솟값을 구하자. 우선 z 를 이차형식 v^{T} Av 형태로 변환한다.

Step 1) a_{1}x^{2} + a_{2}y^{2} + 2a_{3}xy

\Leftrightarrow \left( \begin{array}{rr} x & y \end{array} \right) \left( \begin{array}{rr} a_{1} & a_{3} \\ a_{3} & a_{2} \end{array} \right) \left( \begin{array}{rr} x \\ y \end{array} \right) = v^{T} A v

즉, z = \left( \begin{array}{rr} x & y \end{array} \right) \left( \begin{array}{rr} 5 & 2 \\ 2 & 5 \end{array} \right) \left( \begin{array}{rr} x \\ y \end{array} \right)

Step 2) 행렬 A = \left( \begin{array}{rr} 5 & 2 \\ 2 & 5 \end{array} \right) 의 고윳값과 고유벡터를 구한다.

\Rightarrow \begin{cases} \lambda_{1} = 7 & v_{1} = (1, 1) \\ \lambda_{2} = 3 & v_{2} = (-1, 1) \end{cases}

Step 3) 고유벡터를 정규화한다.

\Rightarrow \begin{cases} \lambda_{1} = 7 & v_{1} = ({1 \over \sqrt{2}}, {1 \over \sqrt{2}}) \\ \lambda_{2} = 3 & v_{2} = (-{1 \over \sqrt{2}}, {1 \over \sqrt{2}}) \end{cases}

Step 4) 따라서 (x, y) = ({1 \over \sqrt{2}}, {1 \over \sqrt{2}}) 일 때 z 는 최댓값 7을 갖고, (x, y) = (-{1 \over \sqrt{2}}, {1 \over \sqrt{2}}) 일 때 z 최솟값 3을 갖는다.

물론 v_{1} = (-1, -1), v_{2} = (1, -1)   등으로 설정해도 무방하며, 최댓(솟)값은 변하지 않는다.

머신 러닝 교과서/ 컴퓨터는 데이터에서 배운다

데이터를 지식으로 바꾸는 지능적인 시스템 구축

  • 20세기 후반 데이터에서 지식으 추출하여 예측하는 자가 학습(self-learning) 알고리즘과 관련된 인공 지능의 하위 분야로 머신 러닝이 출현했다.
    • 사람이 수동으로 대량의 데이터를 분석하여 규칙을 유도하고 모델을 만드는 대신, 머신 러닝이 데이터에서 더 효율적으로 지식을 추출하여 예측 모델과 데이터 기반의 의사 결정 성능을 점진적으로 향상시킬 수 있게 됨.

머신 러닝의 세 가지 종류

  • 머신 러닝은 3가지 종류로 구분해 볼 수 있다.
    • 지도 학습 (supervised learning)
    • 비지도 학습 (unsupervised learning)
    • 강화 학습 (reinforcement learning)

지도 학습으로 미래 예측

  • 지도 학습의 주요 목적은 레이블(label) 된 훈련 데이터에서 모델을 학습하여 본 적 없는 미래 데이터에 대해 예측을 만드는 것. 
    • 지도(supervised)는 희망하는 출력 신호(레이블)가 있는 일련의 샘플을 의미한다.
  • 지도 학습은 다시 데이터를 범주(category)를 구분하는 분류(classification)와 연속적인 값을 출력하는 회귀(regression)으로 구분할 수 있다.

분류: 클래스 레이블 예측

  • 분류는 과거의 관측을 기반으로 새로운 샘플의 범주형 클래스 레이블을 예측하는 것이 목적.
    • 클래스  레이블은 이산적(discrete)이고 순서가 없어 샘플이 속한 그룹으로 이해할 수 있다.
    • 스팸 이메일 감지는 전형적인 이진 분류(binary classification) 작업의 예이다.
  • 두 개 이상의 클래스 레이블을 가진 경우 지도 학습 알고리즘으로 학습한 예측 모델은 훈련 데이터셋에 있는 모든 클래스 레이블을 새로운 샘플에 할당할 수 있다.
    • 이런 다중 분류(multiclass classification)의 전형 적인 예는 손글씨 인식 문제.
  • 아래 그림은 30개의 훈련 샘플이 있는 이진 분류 작업의 개념을 나타낸다.
    • 15개의 샘플은 음성 클래스(negative class)로 레이블(뺄셈 기호)되어 있고, 다른 15개의 샘플은 양성 클래스(positive class)로 레이블(덧셈 기호) 되어 있다.
    • 각 샘플이 두 개의 x_{1}, x_{2} 값에 연관되어 있으므로 2차원 데이터 셋이다.
    • 지도 학습 알고리즘을 사용하여 두 클래스를 구분할 수 있는 규칙을 학습한다. 이 규칙은 점선으로 나타난 결정 경계(decision boundary)이다.
    • 새로운 데이터의 x_{1}, x_{2} 값이 주어지면 두 개의 범주 중 하나로 분류한다.

회귀: 연속적인 출력 값 예측

  • 회귀는 예측 변수(predictor variable)(또는 설명 변수(explanatory variable), 입력(input))와 연속적인 반응 변수(response variable) (또는 출력(outcome), 타겟(target)) 가 주어졌을 때 출력 값을 예측하는 두 변수 사이의 관계를 찾는다.
    • 학생들의 수학 점수를 예측하는 것이 그 예
  • 아래 그림은 선형 회귀(linear regression)의 개념으로 입력 x 와 타깃 y 가 주어지면 샘플과 직선 사이 거리가 최소가 되는 직선을 그을 수 있다. 
    • 일반적으로 평균 제곱 거리를 사용한다.
    • 이렇게 데이터에서 학습한 직선의 기울기와 절편(intercept)을 사용하여 새로운 데이터의 출력 값을 예측한다.

강화 학습으로 반응형 문제 해결

  • 강화 학습은 환경과 상호 작용하여 시스템(에이전트(agent))의 성능을 향상하는 것이 목적이다.
    • 환경의 현재 상태 정보는 보상(reward) 신호를 포함하기 때문에 강화 학습을 지도 학습과 관련된 분야로 생각할 수 있다.
    • 강화 학습의 피드백은 정답(ground truth) 레이블이나 값이 아니라 보상 함수로 얼마나 좋은지를 측정한 값이다.
    • 에이전트는 환경과 상호 작용하여 보상이 최대화 되는 일련의 행동을 강화 학습으로 학습한다.
    • 탐험적인 시행착오(trial and error) 방식이나 신중하게 세운 계획을 사용한다.
    • 강화 학습의 대표적인 예는 체스이다.

  • 강화 학습에는 여러 하위 분류가 있는데, 일반적인 구조는 강화 학습 에이전트가 환경과 상호작용하여 보상을 최대화 하는 것이다.
    • 각 상태는 양의 보상이나 음의 보상과 연관된다. 보상은 체스 게임의 승리나 패배처럼 전체 목표를 달성하는 것으로 정의할 수 있다.

비지도 학습으로 숨겨진 구조 발견

  • 지도 학습에서는 모델을 훈련할 때 사전에 옳은 답을 알고 있고, 강화 학습에서는 에이전트의 특정 행동을 어떻게 보상할지 그 측정 방법을 정의하는 반면, 비지도 학습에서는 레이블되지 않거나 구조를 알 수 없는 데이터를 다룬다.
    • 비지도 학습을 사용하면 알려진 출력 값이나 보상 함수의 도움을 받지 않고 의미 있는 정보를 추출하기 위해 데이터 구조를 탐색할 수 있다.

군집: 서브그룹 찾기

  • 군집(clustering)은 사전 정보 없이 쌓여 있는 그룹 정보를 의미 있는 서브그룹(subgroup) 또는 클러스터(cluster)로 조직하는 탐색적 데이터 분석 기법이다.
    • 분석 과정에서 만든 각 클러스터는 어느 정도 유사성을 공유하고 다른 클러스터와는 비슷하지 않은 샘플 그룹을 형성한다. 군집을 비지도 분류(unsupervised classification)이라고 하는 이유가 여기에 있다.
    • 클러스터링은 정보를 조직화하고 데이터에서 의미 있는 관계를 유도하는 도구이다.
    • 마케터가 관심사를 기반으로 고객 그룹을 나누는 것이 그 예

차원 축소: 데이터 압축

  • 비지도 학습의 또 다른 하위 분야는 차원 축소(dimensionality reduction)이다.
    • 고차원의 데이터를 다루어야 하는 경우 하나의 관측 샘플에 많은 측정 지표가 존재하는데, 이로 인해 머신 러닝 알고리즘의 계산 성능과 저장 공간의 한계에 맞닥뜨릴 수 있다.
    • 비지도 차원 축소는 잡음(noise) 데이터를 제거하기 위해 특성 전처리 단계에서 종종 적용하는 방법이다. 이런 잡음 데이터는 특정 알고리즘의 예측 성능을 감소시킬 수 있다.
    • 차원 축소는 관련 있는 정보를 대부분 유지하면서 더 작은 차원의 부분 공간(subspace)으로 데이터를 압축한다.
  • 차원 축소는 데이터 시각화에도 유리하다. 아래 그림은 고차원 특성을 1, 2, 3차원 특성공간으로 시각화하는 예

기본 용어와 표기법 소개

  • 아래 그림 1-8의 표는 머신 러닝 분야의 고전적인 예제인 붓꽃(Iris) 데이터셋 일부를 보여준다. 붓꽃 데이터 셋은 Setosa, Versicolor, Virginica 세 종류 150개의 붓꽃 샘플을 담고 있다.
    • 각 붓꽃 샘플은 데이터셋에서 하나의 행(row)으로 표현된다.
    • 센티미터 단위의 측정값은 열(column)에 저장되어 있으며, 데이터셋의 특성(feature)라고도 한다.

  • 데이터는 선형대수학(linear algebra)을 사용하여 행렬(matrix)과 벡터(vector) 표기로 데이터를 표현한다.
    • 일반적인 관례에 따라 샘플은 특성 행렬 X 에 있는 행으로 나타내고, 특성은 열을 따라 저장한다.
    • 150개의 샘플과 네 개의 특성을 가진 붓꽃 데이터셋은 150 x 4 크기의 행렬 X \in \mathbb{R}^{150 \times 4} 로 쓸 수 있다.

\left[ \begin{array}{rrrr} x_{1}^{(1)} & x_{2}^{(1)} & x_{3}^{(1)} & x_{4}^{(1)} \\ x_{1}^{(2)} & x_{2}^{(2)} & x_{3}^{(2)} & x_{4}^{(2)} \\ ... & ... & ... & ... \\ x_{1}^{(150)} & x_{2}^{(150)} & x_{3}^{(150)} & x_{4}^{(150)} \end{array} \right]

  • 기호 설명)
    • 위 첨자 i는 i번째 훈련 샘플을(지수가 아니다 주의), 아래 첨자 j는 데이터셋의 j번째 차원을 나타낸다.
    • 굵은 소문자는 벡터 (x \in \mathbb{R}^{n \times 1} )를 나타내고 굵은 대문자는 행렬 (X \in \mathbb{R}^{n \times m} )을 나타낸다.
    • 벡터나 행렬에 있는 하나의 원소를 나타낼 때는 이탤릭체를 사용한다. x^{n} 또는 x_{m}^{n}
    • 예컨대 x_{1}^{150} 은 150번째 샘플의 1번째 차원인 꽃받침 길이를 나타낸다. 특성 행렬의 각 행은 하나의 꽃 샘플을 나타내고 4차원 행 벡터 x^{i} \in \mathbb{R}^{1 \times 4} 로 쓸 수 있다. 

x_{i} = \left[ \begin{array}{rrrr} x_{1}^{(i)} & x_{2}^{(i)} & x_{3}^{(i)} & x_{4}^{(i)} \end{array} \right]

  • 각 특성 차원은 150차원의 열 벡터 x_{j} \in \mathbb{R}^{150 \times 1} 이다. 예컨대 다음과 같다.

x_{j} = \left[ \begin{array}{rrrr} x_{j}^{(1)} \\ x_{j}^{(2)} \\ ... \\ x_{j}^{(150)} \end{array} \right]

  • 비슷하게 타깃 변수(여기서는 클래스 레이블)를 150차원의 열 벡터로 저장한다.

y = \left[ \begin{array}{rrrr} y^{1} \\ y^{2} \\ ... \\ y^{150} \end{array} \right] (y \in \{ Setosa, Versicolor, Virginica \})

  •  

머신 러닝 시스템 구축 로드맵

  • 아래 그림은 예측 모델링에 머신 러닝을 사용하는 전형적인 작업 흐름을 보여준다.

전처리: 데이터 형태 갖추기

  • 데이터 전처리는 모든 머신 러닝 어플리케이션에서 가장 중요한 단계이다.
    • 많은 머신 러닝 알고리즘에서 최적의 성능을 내려면 선택된 특성이 같은 스케일을 가져야 한다. 특성을 [0, 1] 범위로 변환하거나 평균이 0이고 단위 분산을 가진 표준 정규 분포(standard normal distribution)로 변환하는 경우가 많다.
    • 일부 선택된 특성은 매우 상관관계가 높아 어느 정도 중복된 정보를 가질 수 있다. 이때는 차원 축소 기법을 사용하여 특성을 저차원 부분 공간으로 압축한다. 특성 공간의 차원을 축소하면 저장 공간이 덜 필요하고 학습 알고리즘을 더 빨리 실행할 수 있다.
    • 어떤 경우에는 차원 축소가 모델의 예측 성능을 높이기도 한다. 데이터셋에 관련 없는 특성(또는 잡음)이 매우 많을 경우, 즉 신호 대 잡음비(Signal-to-Noise Ratio, SNR)가 낮은 경우이다.
  • 머신 러닝 알고리즘이 훈련 데이터셋에서 잘 작동하고 새로운 데이터에서도 잘 일반화 되는지 확인하려면 데이터셋을 랜덤하게 훈련 세트와 테스트 세트로 나눠야 한다. 
    • 훈련 세트에서 머신 러닝 모델을 훈련하고 최적화 한다. 테스트 세트는 별도로 보관하고 최종 모델을 평가하는 맨 마지막에 사용한다.

예측 모델 훈련과 선택

  • 분류 알고리즘은 저마다 태생적인 편향이 존재한다. 작업에서 아무런 가정도 하지 않는다면 어떤 하나의 분류 모델이 더 우월하다고 말할 수 없다.
    • 현실에서 가장 좋은 모델을 훈련하고 선택하기 위해 최소한 몇 가지 알고리즘을 비교해야 한다.
  • 여러 모델을 비교하기 전에 먼저 성능을 측정할 지표를 결정해야 한다. 분류에서 널리 사용되는 지표는 정확도(accuracy)이다. 정확도는 정확히 분류된 샘플 비율이다.
  • 모델 선택에 테스트 세트를 사용하지 않고 최종 모델을 평가하려고 따로 보관한다면 테스트 세트와 실제 데이터에서 어떤 모델이 잘동작할지를 어떻게 알 수 있을까?
    • 이 질문에 나온 이슈를 해결하기 위해 다양한 교차 검증 기법을 사용한다.
    • 이 기법은 모델의 일반화 성능을 예측하기 위해 훈련 데이터를 훈련 세트와 검증 세트로 더 나눈다.
  • 또 머신 러닝 라이브럴리들에서 제공하는 알고리즘의 기본 하이퍼파라미터가 현재 작업에 최적이라고 기대할 수는 없다. 이어지는 장에서는 모델 성능을 상세하게 조정하기 위해 하이퍼파라미터 최적화 기법을 사용할 것이다.
    • 하이퍼파라미터(hyperparameter)는 데이터에서 학습하는 파라미터가 아니라 모델 성능을 향상하기 위해 사용하는 다이얼로 생각할 수 있다.

모델을 평가하고 본 적 없는 샘플로 예측

  • 훈련 세트에서 최적의 모델을 선택한 후에는 테스트 세트를 사용하여 이전에 본 적 없는 데이터에서 얼마나 성능을 내는지 예측하여 일반화 오차를 예상한다.
    • 이 성능에 만족한다면 이 모델을 사용하여 새로운 데이터를 예측할 수 있다.
    • 이전에 언급한 특성 스케일 조정과 차원 축소 같은 단계에서 사용한 파라미터는 훈련 세트만 사용하여 얻은 것임을 주목해야 한다. 나중에 동일한 파라미터를 테스트 세트는 물론 새로운 모든 샘플을 변환하는데 사용한다.
    • 그렇지 않으면 테스트 세트에서 측정한 성능은 과도하게 낙관적인 결과가 된다. 

머신 러닝을 위한 파이썬

  • (이하 파이썬 설치에 대한 내용 생략)

이상엽/ 선형대수학/ 복소벡터공간

복소벡터공간

정의

복소수체 \mathbb{C} 에 대한 가군. 즉 적당한 집합 V 에 대해 벡터공간 (V, \mathbb{C}, +, \cdot) 을 복소벡터공간이라 한다.

((V, \mathbb{C}, +, \cdot) 에서 \mathbb{C} 는 스칼라를 복소수에서 가져왔다는 얘기다. 실수벡터공간에서는 스칼라를 어디서 가져왔는지를 생략해서 표기한 셈. 엄밀하게 쓰면 (V, \mathbb{R}, +, \cdot) 이 되지만 일반적으로 생략해서 표기한다.)

또한 모든 복소 n-튜플 (v_{1}, v_{2}, ... , v_{n}) 의 집합을 복수 n-공간이라 하고 \mathbb{C}^{n} 으로 표시한다.

복소켤레

\mathbb{C}^{n} 의 임의의 벡터

  • v = (v_{1}, v_{2}, ... , v_{n})
    • = (a_{1} + b_{1}i, a_{2} + b_{2}i, ... , a_{n} + b_{n}i)
    • = (a_{1}, a_{2}, ... , a_{n}) + i(b_{1}, b_{2}, ... , b_{n})
    • = Re(v) + i Im(v)

에 대하여 v 의 복소켤레 (복소수 부분의 부호만 바뀜)

  • \bar{v} = (\bar{v_{1}}, \bar{v_{2}}, ... , \bar{v_{n}}) = Re(v) - i Im(v)
  • ex 1) v = (1+i, -i, 3, 3i) 에 대하여 Re(v), Im(v), \bar{v} 를 구하시오
    • Re(v) = (1, 0, 3, 0)
    • Im(v) = (1, -1, 0, 3)
    • \bar{v} = Re(v) - i Im(v) = (1 - i, i, 3, -3i)
  • ex 2) A = \left( \begin{array}{rr} 1 - i & 2i \\ -1 & 3+2i \end{array} \right) 에 대하여 \bar{A}, det(\bar{A}) 를 구하시오
    • \bar{A} = \left( \begin{array}{rr} 1 + i & -2i \\ -1 & 3-2i \end{array} \right)
    • det(\bar{A}) = 3 - 2i + 3i + 2 - 2i = 5 - i 

대수적 성질

  • \mathbb{C}^{n} 의 벡터 u, v 와 스칼라 k 에 대해
    • \bar{\bar{u}} = u
    • \overline{ku} = \bar{k} \bar{u}
    • \overline{u \pm v} = \bar{u} \pm \bar{v}
  • m \times k 행렬 A k \times n 행렬 B 에 대해
    • \bar{\bar{A}} = A
    • (\overline{A^{T}}) = (\bar{A})^{T}
    • \overline{AB} = \bar{A} \bar{B}

복소내적공간

정의

복소벡터공간 (V, \mathbb{C}, +, \cdot) 의 두 벡터 u = (u_{1}, u_{2}, ... , u_{n}), v = (v_{1}, v_{2}, ... , v_{n}) 의 내적 <u, v> : V \times V \to \mathbb{C}

<u, v> = u \cdot v = u_{1} \bar{v_{1}} + u_{2} \bar{v_{2}} + ... + u_{n} \bar{v_{n}}

로 정의한다. 또한 내적이 정의되어 있는 복소벡터공간을 복소내적공간이라 한다.

(만약 뒤에 있는 벡터에 켤레를 취해주지 않으면 노름 값이 0이나 음수가 나올 수가 있다. 때문에 뒤의 벡터에 켤레를 취해서 노름 값을 자연스럽게 만들어 줌. 엄밀히 말해주면 위의 연산이 내적공간의 연산이 기본이고, 실수벡터공간에서는 켤레를 취해줘도 의미가 없기 때문에 생략이 되었던 것)

성질

복소내적공간의 세 벡터 u, v, w 와 스칼라 k 에 대해 다음 성질이 만족한다.

  • <u, v> = \overline{<v, u>}
  • <u + v, w> = <u, w> + <v, w>
  • <u, v + w> = <u, v> + <u, w>
  • <ku, w> = k<u, w>
  • <u, kv> = \bar{k}<u, v>
  • v \neq \vec{0} 일 때 <v, v> > 0

고윳값과 벡터

정의

복소정사각행렬 A 에 대하여 고유방정식 det(\lambda I - A) = 0 의 복소해 \lambda A 의 복소고윳값이라 한다.

또한 Av = \lambda v 를 만족시키는 모든 벡터 v 의 집합을 A 의 고유공간, 고유공간의 영벡터가 아닌 벡터를 A 의 복소고유벡터라고 한다.

  • ex) A = \left( \begin{array}{rr} 2 & 1 \\ -5 & -2 \end{array} \right) 일 때
    • det(\lambda I_{2} - A) = det(\left( \begin{array}{rr} \lambda - 2 & -1 \\ 5 & \lambda + 2 \end{array} \right)) = \lambda^{2} + 1 = 0
    • \therefore \lambda = i or -i
    • \lambda = i 일 때
      • V = t \left( \begin{array}{rr} - {i + 2 \over 5} \\ 1 \end{array} \right)
      • 고유공간 =\{(- {i + 2 \over 5} , 1) \}
      • 고유벡터 =(- {i + 2 \over 5}t , t) (t \neq 0)

정리

\lambda 가 실 정사각행렬 A 의 고윳값이고 v 는 이에 대응하는 고유벡터이면, \bar{\lambda} 또한 A 의 고윳값이며 \bar{v} 는 이에 대응하는 고유벡터이다.

유니터리 대각화

용어의 정의

켤레전치행렬

복소행렬 A 의 전치행렬을 구한 다음 각 성분을 켤레인 복소수로 바꾼 행렬 A^{H} A 의 켤레전치행렬 또는 에르미트 전치행렬이라 한다.

스칼라 k m \times r 행렬 A r \times n 행렬 B 에 대해 다음이 성립한다.

  • (A^{H})^{H} = A
  • (A \pm B)^{H} = A^{H} \pm B^{H} (복부호 동순)
  • (kA)^{H} = \bar{k} A^{H}
  • (AB)^{H} = B^{H} A^{H}

에르미트행렬

A = A^{H} 가 성립하는 복소정사각행렬 A 를 에르미트행렬이라 한다.

유니터리행렬

복소정사각행렬 A 의 역행렬 A^{-1} 에 대하여 A^{-1} = A^{H} 가 성립하는 행렬 A 를 유니터리행렬이라 한다.

정규행렬

A A^{H} = A^{H} A 가 성립하는 복소정사각행렬 A 를 정규행렬이라 한다. 에르미트행렬, 유니터리행렬 등이 이에 해당한다.

유니터리 대각화

정의

P^{H}AP = D 가 복소대각행렬이 되는 유니터리행렬 P 가 존재하면 복소정사각행렬 A 는 유니터리 대각화가능하다고 한다.

또한 이러한 임의의 행렬 P A 를 유니터리 대각화한다고 한다.

정리

유니터리 대각화 가능한 행렬은 정규행렬이며, 그 역도 성립한다. 즉 정규행렬은 유니터리 대각화 가능하다.

에르미트행렬 A의 유티너리 대각화 과정

  1. A 의 모든 고유공간의 기저를 구한다.
  2. 고유공간의 정규직교기저를 구한다.
  3. 기저벡터를 열벡터로 하는 행렬 P 는 유니터리행렬이고, A 를 대각화 한다.

OpenCV 4로 배우는 컴퓨터 비전과 머신 러닝/ 딥러닝과 OpenCV

딥러닝과 OpenCV DNN 모듈

신경망과 딥러닝

  • 딥러닝(deep learning)은 2000년대부터 사용되고 있는 심층 신경망(deep neural network)의 또 다른 이름이다.
    • 신경망(neural network)은 인공 신경망(artificial neural network)라고도 불리며, 이는 사람의 뇌 신경 세포(neuron)에서 일어나는 반응을 모델링하여 만들어진 고전적인 머신 러닝 알고리즘 이다.
    • 즉, 딥러닝이란 신경망을 여러 계층(layer)으로 쌓아서 만든 머신 러닝 알고리즘 일종이다.
    • 컴퓨터 비전 분야에서 딥러닝이 주목 받는 이유는 객체 인식, 얼굴 인식, 객체 검출, 분할 등의 영역에서 딥러닝이 기존 기술보다 월등한 성능을 보여주고 있기 때문
  • 아래 그림은 전통적인 머신 러닝과 딥러닝에 의한 학습 및 인식 과정을 나타낸 것이다.
    • 기존의 머신 러닝 학습에서는 영상으로부터 인식에 적합한 특징을 사람이 추출하며 머신 러닝 알고리즘 입력으로 전달한다.
    • 그러면 머신 러닝 알고리즘이 특징 벡터 공간에서 여러 클래스 영상을 상호 구분하기에 적합한 규칙을 찾아낸다.
    • 이때 사람이 영상에서 추출한 특징이 영상 인식에 적합하지 않다면 어떤 머신 러닝 알고리즘을 사용한다고 하더라도 좋은 인식 성능을 나타내기는 어렵다.
    • 최근의 딥러닝은 특징 추출과 학습을 모두 딥러닝이 알아서 수행한다. 즉 여러 영상을 분류하기 위해 적합한 특징을 찾는 것과 이 특징을 잘 구분하는 규칙까지 딥러닝이 한꺼번에 찾아낼 수 있다.

  • 딥러닝은 신경망을 여러 계층으로 쌓아서 만든 구조이므로 딥러닝을 이해하려면 신경망에 대한 이해가 필요하다.
    • 신경망의 가장 기초적인 형태는 1950년대 개발된 퍼셉트론(perceptron) 구조이다. 퍼셉트론 구조는 기본적으로 다수의 입력으로부터 가중합을 계산하고, 이를 이용하여 하나의 출력을 만들어 내는 구조이다.
    • 단순한 형태의 퍼셉트론 구조가 아래 그림과 같은데, 그림의 원을 노드(node) 또는 정점(vertex)라고 하고, 노드 사이에 연결된 선으 ㄹ에지(edge) 또는 간선이라 한다.
    • 그림 왼쪽의 x_{1}, x_{2} 노드는 입력 노드이고 오른쪽의 y 는 출력 노드이다.
    • 입력 노드로 이루어진 계층을 입력층(input layer)이라 하고, 출력 노드로 이루어진 계층을 출력층(output layer)이라고 한다.
    • 각각의 에지는 가중치(weight)를 가지며, 아래 그림에서는 두 개의 에지에 각각 w_{1}, w_{2} 의 가중치가 지정되어 있다.

  • 이 퍼셉트론의 출력 y 는 다음 수식에 의해 결정된다.
    • 아래 수식에서 b 는 편향(bias)라고 부르며 y 값 결정에 영향을 줄 수 있는 파라미터이다.

y = \begin{cases} 1 & w_{1} x_{1} + w_{2} x_{2} + b \geq 0 \\ -1 & w_{1} x_{1} + w_{2} x_{2} + b < 0 \end{cases}

  • 기본적인 퍼셉트론을 이용하여 분류를 하는 예
    • 아래 그림은 2차원 평면상에 두 개의 클래스로 나눠진 점들의 분포를 나타낸다. 빨간색 점과 파란색 점을 분류하기 위해 퍼셉트론을 사용할 경우 가중치는 w_{1} = w_{2} = 1 로 설정하고, 편항은 b = -0.5 로 설정할 수 있다. 이 경우 출력 y 는 다음과 같이 결정된다.

y = \begin{cases} 1 & x_{1} + x_{2} - 0.5 \geq 0 \\ -1 & x_{1} + x_{2} - 0.5 < 0 \end{cases}

  • 이처럼 기본적인 퍼셉트론은 입력 데이터를 두 개의 클래스로 선형 분류하는 용도로 사용할 수 있는데, 좀 더 복잡한 형태로 분포되어 있는 데이터 집합에 대해서는 노드의 개수를 늘리거나, 입력과 출력 사이에 여러 개의 은닉층(hidden layer)을 추가하는 형태로 구조를 발전시켜 해결 할 수 있다.
    • 아래 그림은 여러 개의 은닉층이 존재하는 다층 퍼셉트론(MLP, Multi-Layer Perceptron) 구조의 예이다.

  • 신경망이 주어진 문제를 제대로 해결하려면 신경망 구조가 문제에 적합해야 하고, 에지에 적절한 가중치가 부여되어야 한다.
    • 에지의 가중치와 편향값은 경사 하강법(gradient descent), 오류 역전파(error backpropagation) 등의 알고리즘에 의해 자동으로 결정할 수 있다.
    • 신경망에서 학습이란 결국 훈련 데이터셋을 이용하여 적절한 에지 가중치와 편향 값을 구하는 과정이라 할 수 있다.
  • 2000년 초반까지 신경망은 크게 발전하지 못했는데, 은닉층이 많아질수록 학습 시간이 오래 걸리고 학습도 제대로 되지 않았기 때문.
    • 그러다가 2000년 후반, 2010년 초반부터 신경망은 심층 신경망 또는 딥러닝이라는 이름으로 크게 발전하기 시작했다.
    • 딥러닝이 크게 발전한 이유는 3가지를 꼽을 수 있는데, 첫째는 딥러닝 알고리즘이 개선되면서 은닉층이 많아져도 –이래서 deep이다– 학습이 제대로 이루어지게 되었다는 점 , 둘째는 하드웨어의 발전 특히 GPU 성능 향상과 GPU를 활용한 방법으로 학습 시간이 크게 단축되었다는 점, 셋째는 인터넷의 발전으로 빅데이터 활용이 용이해졌다는 점이 그것이다.
    • 특히 컴퓨터 비전 분야에서는 Pascal VOC, ImageNet 과 같이 잘 다듬어진 영상 데이터를 활용할 수 있다는 점이 강점으로 작용했다. 대용량 데이터셋을 이용한 영상 인식 대회 등을 통해 알고리즘 경쟁과 공유가 활발하게 이루어졌다는 점도 딥러닝 발전에 긍정적인 영향을 끼쳤다.
  • 다양한 딥러닝 구조 중에서 특히 영상을 입력으로 사용하는 영상 인식, 객체 검출 등의 분야에서는 합성곱 신경망(CNN, Convolutional Neural Network) 구조가 널리 사용되고 있다.
    • CNN 구조는 보통 2차원 영상에서 특징을 추출하는 컨볼루션(convolution) 레이어와 추출된 특징을 분류하는 완전 연결(FC, Fully Connected) 레이어로 구성된다.
    • 아래 그림은 영상 분류를 위한 일반적인 CNN 네트워크의 구조를 나타낸다.
    • CNN 구조에서 컨볼루션은 필터링과 유사한 성격을 가지며, 영상의 지역적인 특징을 추출하는 역할을 담당한다.
    • 풀링(pooling)은 비선형 다운샘플링(down sampling)을 수행하여 데이터양을 줄이고, 일부 특징을 강조하는 역할을 한다.
    • 완전 연결 레이어는 고전적인 다층 퍼셉트론과 비슷한 구조로서 앞서 추출된 특징을 이용하여 출력 값을 결정한다.
    • 보통 컨볼루션 레이어를 여러 개 연결하고, 맨 뒤에 완전 연결 레이어를 연결하는 형태로 CNN 네트워크를 구성한다.

  • 컴퓨터 비전 분야에서 사용되는 딥러닝 알고리즘은 대부분 CNN 구조를 기본으로 사용하면서 인식의 정확도를 높이거나 연산 속도를 빠르게 하는 등의 목적에 맞게 변형된 형태이다.
    • 컨볼루션 단계에서 사용하는 커널을 1 x 1, 3 x 3, 5 x 5 등의 다양한 크기로 구성하기도 하고, 레이어 사이의 연결 방식도 새롭게 설계하여 효과적인 성능을 얻기도 한다.

OpenCV DNN 모듈

  • 딥러닝은 특히 컴퓨터 비전에서 가장 활발하게 적용되고 있는데, OpenCV는 이러한 트렌드를 이해하고 OpenCV 3.1 부터 딥러닝을 활용할 수 있는 dnn(deep neural network) 모듈을 제공하기 시작했다.
    • OpenCV dnn 모듈은 이미 만들어진 네트워크에서 순방향 실행을 위한 용도로 설계되었다. 즉 딥러닝 학습은 기존의 유명한 카페(Caffe), 텐서플로(TensorFlow) 등의 다른 딥러닝 프레임워크에서 진행하고, 학습된 모델을 불러와서 실행할 때에는 dnn 모듈을 사용하는 방식이다.
    • 많은 딥러닝 프레임워크가 파이썬 언어를 사용하고 있지만, OpenCV dnn 모듈은 C/C++ 환경에서도 동작할 수 있기 때문에 프로그램 이식성이 높다는 장점이 있다.
    • dnn 모듈은 OpenCV 3.1에서는 추가 모듈 형태로 지원되었고, 3.3 버전부터는 기본 모듈에 포함되었다.
  • OpenCV Dnn 모듈에서 지원하는 딥러닝 프레임워크는 다음과 같다.
    • 카페(Caffe)
    • 텐서플로(TensorFlow)
    • 토치(Torch)
    • 다크넷(Darknet)
    • DLDT
    • ONNX
  • dnn 모듈에서 딥러닝 네트워크는 cv::dnn::Net 클래스를 이용하여 표현한다. Net 클래스는 dnn 모듈에 포함되어 있고, cv::dnn 네임스페이스 안에 정의되어 있다.
    • Net 클래스는 사용자가 직접 생성하지 않으며 readNet() 등의 함수를 이용하여 생성한다. readNet() 함수는 미리 학습된 딥러닝 모델과 네트워크 구성 파일을 이용하여 Net 객체를 생성한다.
    • readNet() 함수는 훈련된 가중치가 저장된 model 파일과 네트워크 구조를 표현하는 config 파일을 이용하여 Net 객체를 생성한다. 만약 model 파일에 네트워크 훈련 가중치와 네트워크 구조가 함께 저장되어 있다면 config 인자를 생략할 수 있다.
    • framework 인자에는 모델 파일 생성시 사용된 딥러닝 프레임워크 이름을 지정한다. 만약 model 또는 config 파일 이름 확장자를 통해 프레임워크 구분이 가능한 경우에는 framework 인자를 생략할 수 있다.
    • model과 config 인자에 지정할 수 있는 파일 이름 확장자와 framework에 지정 가능한 프레임워크 이름은 아래 표와 같다.
딥러닝 프레임워크 model 파일 확장자 config 파일 확장자 framework 문자열
카페 *.caffemodel *.prototxt “caffe”
텐서플로 *.pb *.pbtxt “tensorflow”
토치 *.t7 또는 *.net   “torch”
다크넷 *.weights *.cfg “darknet”
DLDT *.bin *.xml “dldt”
ONNX *.onnx   “onnx”
  • readNet() 함수는 전달된 framework 문자열, 또는 model과 config 파일 이름 확장자를 분석하여 내부에서 해당 프레임워크에 맞는 readNetFromXXX() 형태의 함수를 다시 호출한다.
    • 예컨대 model 파일 확장자가 .caffemodel 이면 readNetFromCaffe() 함수를 호출한다.
  • Net 객체를 생성한 후에는 Net::empty() 를 이용하여 객체가 정상적으로 생성되었는지를 확인한다.
  • 일단 Net 객체가 정상적으로 생성되었다면 이제 생성된 네트워크에 새로운 데이터를 입력하여 그 결과를 확인할 수 있다. 이때 Net 객체로 표현되는 네트워크 입력으로 Mat 타입의 2차원 영상을 그대로 입력하는 것이 아니라 블롭(blob) 형식으로 변경해야 한다.
    • 블롭이란 영상 등의 데이터를 포함할 수 있는 다차원 데이터 표현 방식으로 OpenCV에서 블롭은 Mat 타입의 4차원 행렬로 표현된다.
    • 이때 각 차원은 NCHW 정보를 표현하는데, N은 영상개수, C는 채널개수, H, W는 영상의 세로와 가로 크기를 의미한다.
  • OpencCV의 blobFromImage()함수를 이용하여 Mat 영상으로부터 블롭을 생성 할 수 있다. 이렇게 생성한 블롭 객체는 Net::setInput() 함수를 이용하여 네트워크 입력으로 설정한다.
    • Net::setInput() 함수 인자에소 blobFromImage() 함수에 있는 scalefactor와 mean 인자가 있어서 추가적인 픽셀 값을 조정할 수 있다. 결국 네트워크에 입력되는 블롭은 다음과 같은 형태로 설정된다.

input(n, c, h, w) = scalefactor \times (blob(n, c, h, w) - mean_{c})

  • 네트워크 입력을 설정한 후에는 네트워크를 순방향으로 실행하여 결과를 예측할 수 있다. 네트워크를 실행할 때는 Net::forward() 함수를 이용하면 된다.
    • Net::forward() 함수는 순방향으로 네트워크를 실행한다는 의미이며, 이를 추론(inference)라고 한다.
    • Net::forward() 함수는 Net::setInput() 함수로 설정한 입력 블롭을 이용하여 네트워크를 실행하고 outputName에 해당하는 레이어에서의 결과를 Mat 객체로 반환한다.
    • 만약 outputName을 지정하지 않으면 전체 네트워크 실행 결과를 반환한다.
    • Net::forward() 함수가 반환하는 Mat 객체의 형태는 사용하는 네트워크 구조에 따라 다르게 나타나므로 Net::forward() 함수가 반환한 Mat 행렬을 제대로 이용하려면 네트워크 구조와 동작 방식에 대해 충분히 이해하고 있어야 한다.

딥러닝 학습과 OpenCV 실행

텐서플로로 필기체 숫자 인식 학습하기

  • 앞선 필기체 인식의 딥러닝 버전
    • 딥러닝 분야에서는 필기체 숫자 인식 훈련을 위해 MNIST 데이터셋을 주로 사용한다.
  • (MNIST 데이터 셋을 학습 시키는 파이썬 코드 예제 생략)

OpenCV에서 학습된 모델 불러와서 실행하기

  • (텐서플로를 이용하여 MNIST 필기체 숫자 인식 학습 결과를 mnist_cnn.pb 파일에 저장한 결과를 이용)
#include "opencv2/opencv.hpp"
#include <iostream>

using namespace cv;
using namespace cv::dnn;
using namespace std;

void on_mouse(int event, int x, int y, int flags, void* userdata);

int main()
{
Net net = readNet("mnist_cnn.pb");

if (net.empty())
{
cerr << "Network load failed!" << endl;
return -1;
}

Mat img = Mat::zeros(400, 400, CV_8UC1);

imshow("img", img);
setMouseCallback("img", on_mouse, (void*)&img);

while(true)
{
int c = waitKey(0);

if (c == 27)
{
break;
}
else if (c == ' ')
{
Mat inputBlob == blobFromImage(img, 1/255.f, Size(28, 28));
net.setInput(inputBlob);
Mat prob = net.forward();

double maxVal;
Point maxLoc;
minMaxLoc(prob, NULL, &maxVal, NULL, &maxLoc);
int digit = maxLoc.x;

cout << digit << " (" << maxVal * 100 << "%) << endl;

img.setTo(0);
imshow("img", img);
}
}

return 0;
}

Point ptPrev(-1, -1);

void on_mouse(int event, int x, int y, int flags, void* userdata)
{
Mat img = *(Mat*)userdata;

if (event == EVENT_LBUTTONDOWN)
{
ptPrev = Point(x, y);
}
else if (event == EVENT_LBUTTONUP)
{
ptPrev = Point(-1, -1);
}
else if (event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
{
line(img, ptPrev, Point(x, y), Scalar::all(255), 40, LINE_AA, 0);
ptPrev = Point(x, y);

imshow("img", img);
}
}

OpenCV와 딥러닝 활용

구글넷 영상 인식

  • 구글넷(GoogleNet)은 구글에서 발표한 네트워크 구조이며 2014년 ILSVRC 영상 인식 분야에서 1위를 차지했다.
    • 구글넷은 총 22개의 레이어로 구성되어 있으며, 이는 동시에대 발표되었던 딥러닝 네트워크 구조 중에서 가장 많은 레이어를 사용한 형태이다.
    • 레이어를 매우 깊게 설계했지만 완전 연결 레이어가 없는 구조를 통해 기존의 다른 네트워크보다 파라미터 수가 훨씬 적은 것이 특징이다.
    • 구글넷은 특히 다양한 크기의 커널을 한꺼번에 사용하여 영상에서 큰 특징과 작은 특징을 모두 추출할 수 있도록 설계되었다.
    • 구글넷의 전체 네트워크 구조는 아래 그림과 같다.

  • OpenCV에서 구글넷 인식 기능을 사용하려면 다른 딥러닝 프레임워크를 이용하여 미리 훈련된 모델 파일과 구성 파일이 필요하다.
    • 또한 구글넷 인식 기능을 제대로 구현하려면 모델 파일과 구성 파일 외에 인식된 영상 클래스 이름이 적힌 텍스트 파일이 추가로 필요하다. 즉 ILSVRC 대회에서 사용된 1000개의 영상 클래스 이름이 적혀 있는 텍스트 팡리이 필요하며, 이 파일은 OpenCV를 설치할 때 함께 제공된다.
    • 이 텍스트 파일 이름은 classification_classes_ILSVRC2012.txt이며, 이 파일은 <OPENCV-SRC>\samples\data\dnn\ 폴더에서 찾을 수 있다.
  • 구글넷 예제 프로그램을 만들기 위해 필요한 3가지 파일을 정리하면 다음과 같다.
    • 학습 모델 파일: bvlc_googlenet.caffemodel
    • 구성 파일: deploy.prototxt
    • 클래스 이름 파일: classfication_classes_ILSVRC2012.txt
#include "opencv2/opencv.hpp"
#include <iostream>

using namespace cv;
using namespace cv::dnn;
using namespace std;

int main(int argc, char* argv[])
{
Mat img;

if (argc < 2)
img = imread("space_shuttle.jpg", IMREAD_COLOR);
else
img = imread(argv[1], IMREAD_COLOR);

if (img.empty())
{
cerr << "Image load failed!" << endl;
return -1;
}

Net net = readNet("bvlc_googlenet.caffemodel", "deploy.prototxt");

if (net.empty())
{
cerr << "Network load failed!" << endl;
return -1;
}

ifstream fp("classification_classes_ILSVRC2012.txt");

if (!fp.is_open())
{
cerr << "Class file load failed!" << endl;
return -1;
}

vector<String> classNames;
string name;
while(!fp.eof())
{
getline(fp, name);

if (name.length())
classnames.push_back(name);
}

fp.close();

Mat inputBlob = blobFromImage(img, 1, Size(224, 224), Scalar(104, 117, 123));
net.setInput(inputBlob);
Mat prob = net.forward();

double maxVal;
Point maxLoc;
minMaxLoc(prob, NULL, &maxVal, NULL, &maxLoc);

String str = format("%s *%4.2lf%)", classNames[maxLoc.x].c_str(), maxVal * 100);
putText(img, str, Point(10, 30), FONT_HERSHEY_SIMPLEX, 0.8, Scalar(0, 0, 255));
imshow("img", img);

waitKey();
return 0;
}

SSD 얼굴 검출

  • OpenCV를 설치하면 <OPENCV-SRC>\samples\dnn\face_detector 폴더에 딥러닝 얼굴 검출을 위한 파일이 함께 설치된다.
    • 이 폴더에는 얼굴 검출에서 사용된 네트워크 정보가 담겨 있는 deploy.prototxt, opencv_face_detector.pbtxt 파일과 훈련된 학습 모델을 내려받을 수 있는 팡이썬 스크립트 download_weights.py 파일이 들어 있다.
  • (학습 모델 내려 받는 방법 설명 생략)
  • 내려 받은 학습 모델 파일은 2016년에 발표된 SSD(Single Shot Detector) 알고리즘을 이용하여 학습된 파일이다.
    • SSD는 입력 영상에서 특정 객체의 클래스와 위치, 크기 정보를 실시간으로 추출할 수 있는객체 검출 딥러닝 알고리즘이다.
    • SSD 알고리즘은 원래 다수의 클래스 객체를 검출할 수 있지만 OpenCV에서 제공하는 얼굴 검출은 오직 얼굴 객체의 위치와 크기를 알아내도록 훈련된 학습 모델을 사용한다.
    • SSD 네트워크 구조는 아래 그림과 같다.

#include "opencv2/opencv.hpp"
#include <iostream>

using namespace cv;
using namespace cv::dnn;
using namespace std;

const String model = "res10_300x300_ssd_iter_14000_fp16.caffemodel";
const String config = "deploy.prototxt";
//const String model = "opencv_face_detector_uint8.pb";
//const String config = "opencv_face_detector.pbtxt";

int main(void)
{
VideoCapture cap(0);

if (!cap.isOpened())
{
cerr << "Camera open failed!" << endl;
return -1;
}

Net net = readNet(model, config);

if (net.empty())
{
cerr << "Net open failed!" << endl;
return -1;
}

Mat frame;

while(true)
{
cap >> fream;

if (frame.empty())
break;

Mat blob = blobFromImage(frame, 1, Size(300, 300), Scalar(104, 177, 123));
net.setInput(blob);
Mat res = net.forward();

Mat detect(res.size[2], res.size[3], CV_32FC1, res.ptr<float>());

for (int i = 0; i < detect.rows; i++)
{
float confidence = detect.at<float>(i, 2);

if (confidence < 0.5)
break;

int x1 = cvRound(detect.at<float>(i, 3) * frame.cols);
int y1 = cvRound(detect.at<float>(i, 4) * frame.rows);
int x2 = cvRound(detect.at<float>(i, 5) * frame.cols);
int y2 = cvRound(detect.at<float>(i, 6) * frame.rows);

rectangle(frame, Rect(Point(x1, y1), Point(x2, y2)), Scalar(0, 255, 0));

String label = format("Face: %4.3f", confidence);
putText(frame, label, Point(x1, y1-1), FONT_HERSHEY_SIMPLEX, 0.8, Scalar(0, 255, 0));
}

imshow("frame", frame);

if (waitKey(1) == 27)
break;
}

return 0;
}

OpenCV 4로 배우는 컴퓨터 비전과 머신 러닝/ 머신 러닝

머신 러닝과 OpenCV

머신 러닝 개요

  • 머신 러닝(machine learning)이란 주어진 데이터를 분석하여 규칙성, 패턴 등을 찾고 이를 이용하여 의미 있는 정보를 추출하는 과정.
    • 데이터로부터 규칙을 찾아내는 과정을 학습(train) 또는 훈련이라고 하고, 학습에 의해 결정된 규칙을 모델(model)이라 한다. 그리고 새로운 데이터를 학습된 모델에 입력으로 전달하고 결과를 판단하는 과정을 예측(predict) 또는 추론(inference)라고 한다.
  • 머신 러닝은 크게 지도 학습(supervised learning)과 비지도 학습(unsupervised learning)으로 구분된다.
    • 지도 학습은 정답을 알고 있는 데이터를 이용하여 학습을 진행하는 방식으로 훈련 데이터에 대한 정답에 해당하는 내용을 레이블(label)이라고 한다.
    • 아래 그림은 지도 학습 방식으로 영상을 인식하는 과정을 나타낸다.

  • 영상 데이터는 픽셀로 구성되어 있지만, 이 픽셀 값을 그대로 머신 러닝 입력으로 사용하지는 않는다. 영상의 픽셀 값은 조명 변화, 객체의 이동 및 회전 등에 의해 매우 민감하게 변화하기 때문.
    • 때문에 많은 머신 러닝 응용에서는 영상의 다양한 변환에도 크게 변경되지 않는 특징 정보를 추출하여 머신 러닝으로 전달한다.
    • 이처럼 영상 데이터를 사용하는 지도 학습에서는 먼저 다수의 훈련 영상에서 특징 벡터를 추출하고, 이를 이용하여 머신 러닝 알고리즘을 학습 시킨다.
    • 학습의 결과로 생성된 학습 모델은 이후 예측 과정에서 사용된다. 예측 과정에서도 입력 영상으로부터 특징 벡터를 추출하고, 이 특징 벡터를 학습 모델 입력으로 전달하면 입력 영상이 어떤 영상인지에 대한 예측 결과를 얻을 수 있다.
  • 지도 학습은 주로 회귀(regression) 또는 분류(classfication)에 사용된다.
    • 회귀는 연속된 수치 값을 예측하는 작업으로 학생들의 키와 몸무게의 상관관계를 학습하고, 새로운 학생의 키를 입력으로 주었을 때 몸무게를 예측하는 것과 같은 것이다.
    • 분류는 이산적인 값을 결과로 출력하는 머신 러닝으로 사과와 바나나를 구분 –또는 인식(recognition)– 하는 것이 이에 해당한다. 
  • 비지도 학습은 훈련 데이터의 정답에 대한 정보 없이 오로지 데이터 자체만을 이용하는 학습 방식이다.
    • 예컨대 무작위로 섞여 있는 사과와 바나나 사진을 두 개의 그룹으로 나누도록 학습시키는 방식이다. 이 경우 분리된 두 개의 사진 집합이 무엇을 의미하는지는 알수 없고, 단지 두 사진 집합에서 서로 구분되는 특징을 이용하여 서로 분리하는 작업만 수행한다.
    • 비지도 학습은 주로 군집화(clustering) 에 사용된다.
  • 머신 러닝 알고리즘 종류에 따라 내부적으로 사용하는 많은 파라미터에 의해 성능이 달라지기도 한다. 그러므로 최적의 파라미터를 찾는 것이 해결해야 하는 과제가 되기도 한다.
    • 이런 경우 훈련 데이터를 k개의 부분 집합으로 분할하여 학습과 검증(validation)을 반복하면서 최적의 파라미터를 찾을 수 있다.
    • 예컨대 8000개의 훈련 영상을 800개씩 열 개의 부분 집합으로 분할하고 이 중 아홉 개의 부분 집합으로 학습하고 나머지 한 개의 집합을 이용하여 성능을 검증한다. 그리고 검증을 위한 부분 집합을 바꿔가면서 여러 번 학습과 검증을 수행한다.
    • 이처럼 훈련 데이터를 k개의 부분 집합으로 분할하여 학습과 검증을 반복하는 작업을 k-폴드 교차 검증(k-fold cross-validation)이라 한다.
  • 머신 러닝 알고리즘으로 훈련 데이터를 학습할 경우 훈련 데이터에 포함된 잡음 또는 이상치(outlier)의 영향을 고려해야 한다.

OpenCV 머신 러닝 클래스

  • OpenCV는 다양한 머신 러닝 알고리즘을 클래스로 구현하여 제공한다.
    • OpenCV에서 제공하는 머신 러닝 클래스는 주로 ml 모듈에 포함되어 있고, cv::ml::StatModel 추상 클래스를 상속받아 만들어진다.
    • StatModel 클래스 이름은 통계적 모델(statistical model)을 의미한다.
  • StatModel 추상 클래스를 상속 받아 만들어진 머신 러닝 알고리즘 구현 클래스는 아래 그림과 같다.
    • StatModel 클래스는 머신 러닝 알고리즘을 학습시키는 StatModel::train() 멤버 함수를 갖고 있다. StatModel 클래스를 상속 받아 만든 머신 러닝 구현 클래스는 각각의 머신 러닝 알고리즘에 해당하는 train()과 predict() 기능을 재정의하고 있다.
  • StatModel::train() 함수는 samples에 저장된 다수의 훈련 데이터를 사용하여 머신 러닝 알고리즘을 학습한다.
    • 이때 훈련 데이터에 대한 정답 또는 레이블 정보는 response 인자로 전달한다.
    • 보통 samples와 responses 인자는 Mat 타입 객체로 전달한다.
    • Mat 행렬에 훈련 데이터가 어떤 방식으로 저장되어 있는지를 layout 인자로 설정한다. layout에는 RAW_SAMPLE(행 단위)과 COL_SAMPLE(열 단위) 상수를 지정할 수 있다.
    • StatModel 클래스를 상속받은 클래스 객체에서 train() 함수를 호출하면 각 머신 러닝 알고리즘에 해당하는 방식으로 학습을 진행한다.
  • 이미 학습된 모델에 대해 테스트 데이터의 응답을 얻고 싶으면 StatModel::predict() 함수를 사용하면 된다.
    • StatModel::predict() 함수는 순수 가상 함수로 선언되었으며, 각각의 머신 러닝 알고리즘 구현 클래스는 자신만의 알고리즘을 이용한 예측을 수행하도록 predict() 함수를 재정의하고 있다.
    • 일부 머신 러닝 알고리즘 구현 클래스는 predict(0 대신 고유의 예측 함수를 이용하기도 한다.
  • OpenCV에서 StatModel 클래스를 상속받아 만들어진 머신 러닝 알고리즘 구현 클래스에 대한 설명은 아래 표에 있다.
클래스 이름 설명
ANN_MLP 인공 신경망(artificial neural network) 다층 퍼셉트론(multi-layer perceptrons). 여러 개의 은닉층을 포함한 신경망을 학습시킬 수 있고, 입력 데이터에 대한 결과를 예측할 수 있다.
DTrees 이진 의사 결정 트리(decision trees) 알고리즘. DTrees 클래스는 다시 부스팅 알고리즘을 구현한 ml::Boost 클래스와 랜덤 트리(random tree) 알고리즘을 구현한 ml:RTree 클래스의 부모 클래스 역할을 한다.
Boost 부스팅(boosting) 알고리즘. 다수의 약한 분류기(weak classifier)에 적절한 가중치를 부여하여 성능이 좋은 분류기를 만든다.
RTrees 랜덤 트리(random tree) 또는 랜덤 포르세느(random forest) 알고리즘.입력 특징 벡터를 다수의 트리로 예측하고, 그 결과를 취합하여 분류 또는 회귀를 수행한다.
EM 기댓값 최대화(Expectation Maximization). 가우시안 혼합 모델(Gausssian mixture model)을 이용한 군집화 알고리즘
KNearest k 최근접 이웃(k-Nearest Neighbor) 알고리즘. k 최근접 이웃 알고리즘은 샘플 데이터와 인접합 k개의 훈련 데이터를 찾고, 이 중 가장 많은 개수에 해당하는 클래스를 샘플 데이터 클래스로 지정한다.
LogisticRegression 로지스틱 회귀(logistic regression). 이준 분류 알고리즘의 일종
NormalBayesClassifier 정규 베이즈 분류기. 정규 베이즈 분류기는 각 클래스의 특징 벡터가 정규 분포를 따른다고 가정한다. 따라서 전체 데이터 분포는 가우시안 혼합 모델로 표현 가능하다. 정규 베이즈 분류기는 학습 데이터로부터 각 클래스의 평균 벡터와 공분산 행렬을 계산하고 이를 예측에 사용한다.
SVM 서포트 벡터 머신(support vector machine) 알고리즘. 두 클래스의 데이터를 가장 여유 있게 분리하는 초평며을 구한다. 커널 기법을 이용하여 비선형 데이터 분류에도 사용할 수 있으며, 다중 클래스 분류 및 회귀에도 적용할 수 있다.
SVMSDG 통계적 그래디언트 하향(stochastic gradient descent) SVM. 통계적 그래디언트 하향 방법을 SVM에 적용함으로써 대용량 데이터에 대해서도 빠른 학습이 가능하다.

k 최근접 이웃

k 최근접 이웃 알고리즘

  • k 최근접 이웃(kNN, k-Nearest Neighbor) 알고리즘은 분류 또는 회귀에 사용되는 지도 학습 알고리즘의 하나이다.
    • kNN 알고리즘을 분류에 사용할 경우 특징 공간에서 테스트 데이터와 가장 가까운 k개의 훈련 데이터를 찾고, k개의 훈련 데이터 중에서 가장 많은 클래스를 테스트 데이터의 클래스로 지정한다.
    • kNN 알고리즘으 ㄹ회귀 문제에 적용할 경우에는 테스트 데이터에 인접합 k개의 훈련 데이터 평균을 테스트 데이터 값으로 설정한다.
  • 아래 그림은 kNN 알고리즘 동작 방식에 대한 예시이다.
    • 아래 그림은 2차원 평면상에 파란색 사각형과 빨간색 삼각형 두 종류의 데이터가 분포되어 있는데, 파란색과 빨간 점들이 훈련된 데이터이고, 이 훈련된 데이터는 2개의 클래스로 구분되어 있다.
    • 각 점들은 (x, y) 좌표로 표현되므로, 이들 데이터는 2차원 특징 곤간에 정의되어 있다고 할 수 있다.
    • 여기에 녹색으로 새로운 점을 추가할 경우, 이 점을 파란색으로 분류 할지 빨간색으로 분류할지를 결정해야 하는데, 간단한 방법은 새로 들어온 점과 가장 가까이 있는 점을 찾아 해당 데이터와 같은 클래스로 분류하는 방법이다.
    • 아래 그림 상 녹색 점과 가장 가까운 점은 빨간색 삼각형이므로 녹색 점을 빨간색 삼각형과 같은 클래스로 지정할 수 있다.
    • 이러한 방법은 최근접 이웃(NN, Nearest Neighbor) 알고리즘이라 한다.
    • 그러나 녹색 점 주변에 분포로는 빨간색 삼각형보다 파란색 사각형이 더 많은데, 이와 같은 이유로 녹색점을 파란색 사각형으로 분류하는 방식을 kNN 알고리즘이라고 한다.

  • kNN 알고리즘에서 k를 1로 설정하면 최근접 이웃 알고리즘이 된다. 그러므로 보통 k는 1보다 큰 값을 설정하며, k값을 어떻게 설정하느냐에 따라 분류 및 회귀 결과가 달라질 수 있다.
    • 최선의 k 값을 결정하는 것은 주어진 데이터에 의존적이며, 보통 k값이 커질수록 잡음 또는 이상치 데이터의 영향이 감소한다. 그러나 k값이 어느 정도 이상으로 커질 경우 오히려 분류 및 회귀 성능이 떨어질 수 있다.

KNearest 클래스 사용하기

  • OpenCV에서 k 최근접 이웃 알고리즘은 KNearest 클래스에 구현되어 있다.
    • (KNearest의 함수 설명 생략)
    • KNearest 객체는 기본적으로 분류를 위한 용도로 사용된다. 만일 KNearest 객체를 분류가 아닌 회귀에 적용하려면 KNearest::setIsClassifier() 멤버 함수에 false를 지정하여 호출하면 된다.
    • KNearest 객체를 생성하고 속성을 설정한 후에는 StatModel::train() 함수를 통해 학습을 진행할 수 있는데, KNearest 클래스의 경우에는 train() 함수에서 실제적인 학습이 진행되지는 않으며 단순히 훈련 데이터와 레이블 데이터를 KNearest 클래스 멤버 변수에 모두 저장하는 작업이 이루어진다.
  • KNearest 클래스에서 훈련 데이터를 학습한 후 테스트 데이터에 대한 예측을 수행할 때는 KNearest::findNearest() 멤버 함수를 사용한다.
    • 이는 StatModel::predict() 보다 KNearest::findNearest() 함수가 예측 결과와 관련된 정보를 더 많이 반환하기 때문이다.
    • KNearest::findNearest() 함수는 samples 행렬 각 행에 저장된 테스트 데이터와 가까운 k개의 훈련 데이터를 찾아 분류 또는 회귀 응답을 반환한다.
#include "opencv2/opencv.hpp"
#include <iostream>

using namespace cv;
using namespace cv::ml;
using namespace std;

Mat img;
Mat train, label;
Ptr<KNearest> knn;
int k_value = 1;

void on_k_changed(int, void*);
void addPoint(const Point& pt, int cls);
void trainAndDisplay();

int main(void)
{
img = Mat::zeros(Size(500, 500), CV_8UC3);
knn = KNearest::create();

namedWindow("knn");
createTrackbar("k", "knn", &k_value, 5, on_k_changed);

const int NUM = 30;
Mat rn(NUM, 2, CV_32SC1);

randn(rn, 0, 50);
for (int i = 0; i < NUM; i++)
addPoint(Point(rn.at<int>(i, 0) + 150, rn.at<int>(i, 1) + 150), 0);

randn(rn, 0, 50);
for (int i = 0; i < NUM; i++)
addPoint(Point(rn.at<int>(i, 0) + 350, rn.at<int>(i, 1) + 150), 1);

randn(rn, 0, 70);
for (int i = 0; i < NUM; i++)
addPoint(Point(rn.at<int>(i, 0) + 250, rn.at<int>(i, 1) + 400), 2);

trainAndDisplay();

waitKey();
return 0;
}

void on_k_changed(int, void*)
{
if (k_value < 1)
k_value = 1;

trainAndDisplay();
}

void addPoint(const Point& pt, int cls)
{
Mat new_sample = (Mat_<float>(1, 2) << pt.x, pt.y);
train.push_back(new_sample);

Mat new_label = (Mat_<int>(1, 1) << cls);
label.push_back(new_label);
}

void trainAndDisplay()
{
knn->train(train, ROW_SAMPLE, label);

for (int i = 0; i < img.rows; ++i)
{
for (int j = 0; j < img.cols; ++j)
{
Mat sample = (Mat_<float>(1, 2) << j, i);
Mat res;
knn->findNearest(sample, k_value, res);

int response = cvRound(res.at<float>(0, 0));
if (response == 0)
img.at<Vec3b>(i, j) = Vec3b(128, 128, 255);
else if (response == 1)
img.at<Vec3b>(i, j) = Vec3b(128, 255, 128);
else if (response == 2)
img.at<Vec3b>(i, j) = Vec3b(255, 128, 128);
}
}

for (int i = 0; i < train.rows; i++)
{
int x = cvRound(train.at<float>(i, 0));
int y = cvRound(train.at<float>(i, 1));
int l = label.at<int>(i, 0);

if (l == 0)
circle(img, Point(x, y), 5, Scalar(0, 0, 128), -1, LINE_AA);
else if (l == 1)
circle(img, Point(x, y), 5, Scalar(0, 128, 0), -1, LINE_AA);
else if (l == 2)
circle(img, Point(x, y), 5, Scalar(128, 0, 0), -1, LINE_AA);
}

imshow("knn", img);
}

kNN을 이용한 필기체 숫자 인식

  • 20 x 20 숫자 영상 픽셀값 자체를 kNN 알고리즘 입력으로 사용하는 예시
    • 5000개의 숫자 영상 데이터의 한 장의 숫자 영상은 20 x 20 픽셀 크기이고, 이 픽셀 값을 모두 일렬로 늘어 놓으면 1 x 400 크기의 행렬로 변환할 수 있다.
    • 즉 필기체 숫자 훈련 데이터 하나는 400개의 숫자 값으로 표현되고, 이는 400차원 공간에서의 한 점과 같다.
    • digits.png 영상에 있는 각각의 숫자 영상을 1 x 400 행렬로 바꾸고, 이 행렬을 모두 세로로 쌓으면 전체 숫자 영상 데이터를 표현하는 5000 x 400 크기의 행렬을 만들 수 있다. 그리고 이 행렬을 KNearest 클래스의 훈련 데이터로 전달한다.
    • kNN 알고리즘으로 필기체 숫자 영상을 학습시키려면 각 필기체 숫자 영상이 나타내는 숫자 값을 레이블 행렬로 함께 전달해야 한다. 이 레이블 행렬의 행 크기는 훈련 데이터 영상 개수와 같고, 열 크기는 1이된다.
    • 아래 그림에서 첫 행은 0, 그 다음 행은 1에 대한 데이터이므로 레이블 행렬도 첫 행의 원소는 0으로 설정하고 그 다음 해으이 원소는 1로 설정한다. 그렇게 모든 행의 원소를 설정한 후, KNearest 클래스의 레이블 데이터로 전달한다.

#include "opencv2/opencv.hpp"
#include <iostream>

using namespace cv;
using namespace cv::ml;
using namespace std;

Ptr<KNearest> train_knn();
void on_mouse(int event, int x, int y, int flags, void* userdata);

int main()
{
Ptr<KNearest> knn = train_knn();

if (knn.empty())
{
cerr << "Training failed!" << endl;
return -1;
}

Mat img = Mat::zeros(400, 400, CV_8U);

imshow("img", img);
setMouseCallback("img", on_mouse, (void*)&img);

while(true)
{
int c = waitKey(0);

if (c == 27)
{
break;
}
else if (c == ' ')
{
Mat img_resize, img_float, img_flatten, res;
resize(img, img_resize, Size(20, 20), 0, 0, INTER_AREA);
img_resize.convertTo(img_float, CV_32F);
img_flatten = img_float.reshape(1, 1);

knn->findNearest(img_flatten, 3, res);
cout << cvRound(res.at<float>(0, 0)) << endl;

img.setTo(0);
imshow("img", img);
}
}

return 0;
}

Ptr<KNearrest> train_knn()
{
Mat digits = imread("digits.png", IMREAD_GRAYSCALE);

if (digits.empty())
{
cerr << "Image load failed!" << endl;
return 0;
}

Mat train_images, train_labels;

for (int j = 0; j < 50; j++)
{
for (int i = 0; i < 100; i++)
{
Mat roi, roi_float, roi_flatten;
roi = digits(Rect(i*20, j*20, 20, 20));
roi.convertTo(roi_float, CV_32f);
roi_flatten = roi_float.reshape(1, 1);

train_images.push_back(roi_flatten);
train_labels.push_back(j / 5);
}
}

Ptr<KNearest> knn = KNearest::create();
knn->train(train_images, ROW_SAMPLE, train_labels);

return knn;
}

Point ptPrev(-1, -1);

void on_mouse(int event, int x, int y, int flags, void* userdata)
{
Mat img = *(Mat*)userdata;

if (event == EVENT_LBUTTONDOWN)
{
ptPrev = Point(x, y);
}
else if (event == EVENT_LBUTTONUP)
{
ptPrev = Point(-1, -1);
}
else if (event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
{
line(img, ptPrev, Point(x, y), Scalar::all(255), 40, LINE_AA, 0);
ptPrev = Point(x, y);

imshow("img", img);
}
}

서포트 벡터 머신

서프트 벡터 머신 알고리즘

  • 서포트 벡터 머신(SVM, Support, Vector Machine)은 기본적으로 두 개의 클래스로 구성된 데이터를 가장 여유 있게 분리하는 초평면(hyperplane)을 찾는 머신 러닝 알고리즘이다.
    • 초평면이란 두 클래스의 데이터를 분리하는 N차원 공간상의 평면을 의미한다. 예컨대 2차원 공간상의 점들을 분리하는 초평면은 단순한 직선 형태로 정의되며, 3차원 공간상의 점들을 분리하는 초평면은 3차원 공간에서의 평면의 방정식으로 표현할 수 있다.
    • SVM 알고리즘은 지도 학습의 일종으로 분류와 회귀에 사용될 수 있다.
  • 아래 그림은 SVM 알고리즘에 대한 예시이다.
    • 아래 그림은 파란색 사각형과 빨간색 삼각형으로 표시된 두 클래스의 점들의 분포를 나타내는데, 이 두 클래스 점들을 구분하기 위한 직선은 매우 다양하게 만들 수 있다.
    • 그림 (a)의 1, 2번 직선은 모두 두 종류의 점들을 잘 분리하지만, 1번 직선은 조금만 왼쪽이나 오른쪽으로 이동해도 분리에 실패하게 되고, 2번 직선도 오른쪽으로 조금만 이동하면 분리에 실패하게 된다.
    • 이는 1, 2번 직선이 모두 입력 점 데이터에너무 가까이 위치하고 있기 때문인데, 그림 (b)의 3번 직선은 두 클래스 점들 사이를 충분히 여유 있게 분할하고 있어서 그런 문제가 없다.
    • 이때 3번 직선에 해당하는 초평면과 가장 가까이 있는 빨간색 또는 파란색 점들과의 거리를 마진(margin)이라 하며, SVM은 이 마진을 최대로 만드는 초평면을 구하는 알고리즘이다.

  • SVM은 기본적으로 선형으로 분리 가능한 데이터에 적용할 수 있다.
    • 그러나 실생활에서 사용하는 데이터는 선형으로 분리되지 않는 경우가 많으며, 이러한 경우에도 SVM 알고리즘을 적용하기 위해 SVM에서는 커널 트릭(kernel trick)이라는 기법을 사용한다.
    • 커널 트릭이란 적절한 커널 함수를 이용하여 입력 데이터 특징 공간 차원을 늘리는 방식이다. 원본 데이터 차원에서는 선형으로 분리할 수 없었던 데이터를 커널 트릭으로 고차원 특징 공간으로 이동하면 선형으로 분리 가능한 형태로 바뀔 수 있다.
  • 데이터 특징 공간 차원을 증가시켜서 데이터를 선형 분리하는 예는 다음과 같다.
    • 2차원 좌표 평면 상의 점 집합 X = { (0, 0), (1, 1) }과 Y = { (1, 0), (0, 1) }이 있다고 가정하고, 이 두 클래스 점들을 아래 그림 처럼 각각 파란색과 빨간색 점으로 나타냈다.
    • 2차원 평면상에서 X, Y 두 클래스 점들을 분리할 수 있는 직선은 존재하지 않는데, 입력 점들의 좌표에 가상의 z축 좌표를 z_{i} = | x_{i} - y_{i} | 형태로 추가할 경우, X = { (0, 0, 0), (1, 1, 0) }과 Y = { (1, 0, 1), (0, 1, 1) } 형태로 3차원 공간상에서의 점 집합으로 바뀌게 된다.
    •  이렇게 차원 공간으로 변경된 X와 Y 점들을 아래 그림의 (b)처럼 그릴 수 있다. 그리고 이 두 클래스 점들은 z = 0.5 평면의 방정식을 이용하여 효과적으로 분리할 수 있다.
    • 2차원 평면에서 선형 분리할 수 없었던 X와 Y 데이터 집합이 가상의 차원을 추가함으로써 선형으로 분리될 수 있게 된 것이다.

  • SVM 알고리즘에서 사용할 수 있는 커널 함수의 종류는 아래 표와 같다.
    • 아래 표에서 가장 널리 사용되는 커널은 방사 기저 함수이며, 이 커널을 사용할 때는 \gamma   인자 값을 적절히 설정해야 한다. 
    • 만약 입력 데이터가 선형으로 분리 가능하다면 선형 커널을 사용하는 것이 가장 빠르게 동작한다.
SVM 커널 커널 함수
선형(linear) K(x_{i}, x_{j}) = x_{i}^{T}x_{j}
다항식(polynomial) K(x_{i}, x_{j}) = (\gamma x_{i}^{T}x_{j} + c_{0})^{degree}, \gamma > 0
방사 기저 함수(radial basis function) K(x_{i}, x_{j}) = exp(-\gamma \|x_{i}-x_{j}\|^{2}), \gamma > 0
시그모이드(sigmoid) K(x_{i}, x_{j}) = tanh(\gamma x_{i}^{T} x_{j} + c+{0})
지수 카이 제곱(exponential chi-square) K(x_{i}, x_{j}) = exp(-\gamma {(x_{i} - x_{j})^{2} \over x_{i} + x_{j}}), \gamma > 0
히스토그램 교차(histogram intersection) K(x_{i}, x_{j}) = min(x_{i}, x_{j})

SVM 클래스 사용하기

  • OpenCV에서 SVM 알고리즘은 SVM 클래스에 구현되어 있다. OpenCV에 구현된 SVM 클래스는 오픈소스 라이브러리인 LIBSVM을 기반으로 만들어졌다.
    • SVM 클래스는 기본적으로 SVM::Types::C_SVC 타입을 사용하도록 초기화되며 다른 타입을 사용하려면 SVM::setType() 함수를 이용하여 타입을 변경할 수 있다.
    • SVM::Types::C_SVC 타입을 사용하는 경우 SVM 알고리즘 내부에서 사용하는 C 파라미터 값을 적절하게 설정해야 하는데, C 값을 작게 설정하면 훈련 데이터 중에 잘못 분류된느 데이터가 있어도 최대 마진을 선택하고, C 값을 크게 설정하면 마진이 작아지더라도 잘못 분류되는 데이터가 적어지도록 분류한다.
    • 만약 훈련 샘플 데이터에 잡음 또는 이상치 데이터가 많이 포함된 경우에는 C 파라미터 값을 크게 설정하는 것이 유리하다.
SVM::Types 설명 파라미터
C_SVC C-서포트 벡터 분류. 일반적인 n-클래스 분류 문제에서 사용된다. C
NU_SVC v-서포트 벡터 분류. C_SCV와 비슷하지만 Nu 값 범위가 0-1 사이로 정규화 되어 있다. Nu
ONE_CLASS 1-분류 서포트 벡터 머신. 데이터 분포 측정에 사용된다. C, Nu
EPS_SVR \epsilon -서포트 벡터 회귀 P, C
NU_SVR v-서포트 벡터 회귀 Nu, C
  • SVM 타입 설정 후에 SVM 알고리즘에서 사용할 커널 함수를 지정해야 한다. 함수 지정은 SVM::setKernel() 함수를 이용하면 된다.
SVM::KernelTYpes 설명 파라미터
LINEAR 선형 커널  
POLY 다항식 커널 Degree, Gamma, Coef0
RBF 방사 기저 함수 커널 Gamma
SIGMOID 시그모이드 커널 Gamma, Coef0
CHI2 지수 카이 제곱 커널 Gamma
INTER 히스토그램 교차 커널  
  • SVM 타입과 커널 함수 종류를 설정한 후에는 각각의 타입과 커널 함수 정의에 필요한 파라미터를 설정해야 한다.
    • SVM 클래스에서 설정할 수 있는 파라미터는 C, Nu, P, Degree, Gamma, Coef0 등이 있으며, 이들 파라미터는 차례대로 1, 0, 0, 0, 1, 0으로 초기화 된다.
    • 각각의 파라미터는 파라미터 이름에 해당하는 setXXX()와 getXXX(0 함수를 이용하여 값을 설정하거나 읽어올 수 있다.
  • SVM 객체를 생성하고 타입과 커널 함수, 파라미터를 설정한 후에는 StatModel::train() 함수를 이용하여 학습을 시킬 수 있다.
    • 그러나 SVM에서 사용하는 파라미터를 적절하게 설정하지 않으면 학습이 제대로 되지 않는데, OpenCV에서는 각각의 파라미터에 대해 설정 가능한 값을 적용해 보고 그중 가장 성능이 좋은 파라미터를 자동으로 찾아 학습하는 SVM::trainAuto() 함수를 제공한다.
    • 다만 SVM::trainAuto() 함수는 매우 느리기 때문에 한 번 학습이 완료된 후 선택된 파라미터를 저장했다가 재사용하는 편이 좋다.
  • SVM 학습이 완료되었다면 StatModel::predict()를 통해 테스트 데이터에 대한 예측을 수행할 수 있다.
#include "opencv2/opencv.hpp"
#include <iostream>

using namespace cv;
using namespace cv::ml;
using namespace std;

int main(void)
{
Mat train = Mat_<float>({8, 2}, {150, 200, 200, 250, 100, 250, 150, 300, 350, 100, 400, 200, 400, 300, 350, 400});
Mat label = Mat_<int>({8, 1}, {0, 0, 0, 0, 1, 1, 1, 1});

Ptr<SVM> svm = SVM::create();
svm->setType(SVM::Types::C_SVC);
svm->setKernel(SVM::KernelTypes::RBF);
svm->trainAuto(train, ROW_SAMPLE, label);

Mat img = Mat::zeros(Size(500, 500), CV_8UC3);

for (int j = 0; j < img.rows; j++)
{
for (int i = 0; i < img.cols; i++)
{
Mat test = Mat_<float>({1, 2}, {(float)i, (float)j});
int res = cvRound(svm->predict(test));

if (res == 0)
img.at<Vec3b>(j, i) = Vec3b(128, 128, 255);
else
img.at<Vec3b>(j, i) = Vec3b(128, 255, 128);
}
}

for (int i = 0; i < train.rows; i++)
{
int x = cvRound(train.at<float>(i, 0));
int y = cvRound(train.at<float>(i, 1));
int l = label.at<int>(i, 0);

if (l == 0)
cicle(img, Point(x, y), 5, Scalar(0, 0, 128), -1, LINE_AA);
else
cicle(img, Point(x, y), 5, Scalar(0, 128, 0), -1, LINE_AA);
}

imshow("svm", img);

waitKey();
return 0;
}

HOG & SVM 필기체 숫자 인식

  • kNN으로 했던 필기체 인식의 SVM 버전
    • 각 숫자 영상에서 HOG 특징 벡터를 추출한 후 SVM 알고리즘 입력 데이터로 사용한다.
    • HOG 특징 벡터 추출을 위해 HOGDescriptor 클래스를 사용한다.
#include "opencv2/opencv.hpp"
#include <iostream>

using namespace cv;
using namespace cv::ml;
using namespace std;

Ptr<SVM> train_hog_svm(const HOGDescriptor& hog);
void on_mouse(int event, int x, int y, int flags, void* userdata);

int main()
{
HOGDescriptor hog(Size(20, 20), Size(10, 10), Size(5, 5), Size(5, 5), 9);

Ptr<SVM> svm = train_hog_svm(hog);

if (svm.empty())
{
cerr << "Training failed!" << endl;
return -1;
}

Mat img = Mat::zeros(400, 400, CV_8U);

imshow("img", img);
setMoustCallback("img", on_mouse, (void*)&img);

 while(true)
{
int c = waitKey(0);

if (c == 27)
{
break;
}
else if (c == ' ')
{
Mat img_resize;
resize(img, img_resize, Size(20, 20), 0, 0, INTER_AREA);

vector<float> desc;
hog.compute(img_resize, desc);

Mat desc_mat(desc);
int res = cvRound(svm->predict(desc_mat.t()));
cout << res << endl;

img.setTo(0);
imshow("img", img);
}
}

return 0;
}

Ptr<SVM> train_hog_svm(const HOGDescriptor& hog)
{
Mat digits = imread("digits.png", IMREAD_GRAYSCALE);

if (digits.empty())
{
cerr << "Image load failed!" << endl;
return 0;
}

Mat train_hog, train_labels;

for (int j = 0; j < 50; j++)
{
for (int i = 0; i < 100; i++)
{
Mat roi = digits(Rect(i*20, j*20, 20, 20));

vector<float> desc;
hog.compute(roi, desc);

Mat desc_mat(desc);
train_hog.push_back(desc_mat.t());
train_labels.push_back(j / 5);
}
}

// 아래 상수값은 SVM::trainAuto()를 통해 구한 값이다.
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::Types::C_SVC);
svm->setKernel(SVM::KernelTypes::RBF);
svm->setC(2.5);
svm->setGamma(0.50625);
svm->train(train_hog, ROW_SAMPLE, train_labels);

return svm;
}

Point ptPrev(-1, -1);

void on_mouse(int event, int x, int y, int flags, void* userdata)
{
Mat img = *(Mat*)userdata;

if (event == EVENT_LBUTTONDOWN)
{
ptPrev = Point(x, y);
}
else if (event == EVENT_LBUTTONUP)
{
ptPrev = Point(-1, -1);
}
else if (event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
{
line(img, ptPrev, Point(x, y), Scalar::all(255), 40, LINE_AA, 0);
ptPrev = Point(x, y);

imshow("img", img);
}
}

OpenCV 4로 배우는 컴퓨터 비전과 머신 러닝/ 지역 특징점 검출과 매칭

코너 검출

해리스 코너 검출 방법

  • 영상에서 특징(feature)란 영상으로부터 추출할 수 있는 유용한 정보를 의미하며, 평균 밝기, 히스토그램, 에지, 직선 성분, 코너 등이 특징이 될 수 있다.
    • 영상의 특징 중에서 에지, 직선, 성분, 코너처럼 영상 전체가 아닌 일부 영역에서 추출할 수 있는 특징을 지역 특징(local feature)이라고 한다.
    • 영상의 지역 특징 중 코너(corner)는 에지의 방향이 급격하게 변하는 부분으로서 삼각형의 꼭지점이나 연필 심처럼 뾰족하게 튀어나와 있는 부분이 코너가 될 수 있다.
    • 코너는 에지나 직선 성분에 비해 분별력이 높고 대체로 영상 전 영역에 골고루 분포하기 때문에 영상을 분석하는데 유용한 지역 특지응로 사용된다.
    • 코너처럼 한 점의 형태로 표현할 수 있는 특징을 특징점(feature point)라고 하며, 특징점은 키포인트(keypoint) 또는 관심점(interest point)라고 부르기도 한다.
  • 아래 그림에서 A 부분은 내부 픽셀값 변화가 크지 않은 평탄한 영역이며, 원본 영상에서 하늘 여역 전체는 A와 비슷한 픽셀값 분포를 갖는다.
    • B 부분은 하늘과 바다가 만나는 수평선 부근으로 정확한 x 좌표는 가늠하기 어렵다. 
    • C 부분은 건물이 뾰족하게 튀어나와 있는 부분으로 원본 영상 오른쪽 산등성이에서 유일한 위치를 찾을 수 있다.
    • 이렇듯 코너는 에지나 평탄한 영역에 비해 변별력이 높아서 그 위치를 파악하기 쉽다.

  • 영상에서 코너를 찾는 연구는 1970년대 후반부터 활발하게 진행되었는데, 1988년 해리스(C. Harris)가 개발한 코너 검출 방법은 코너 점 구분을 위한 기본적인 아이디어를 수학적으로 잘 정의하였다는 점에서 큰 의미가 있다.
    • 해리스는 영상의 특정 위치 (x, y) 에서 \Delta x \Delta y 만큼 떨어진 픽셀과의 밝기 차이를 다음 수식으로 표현하였다.

E(\Delta x, \Delta y) = \sum_{x, y} w(x, y) [I(x + \Delta x, y + \Delta y) - I(x, y)]^{2}

  • 위 수식에서 w(x, y) 는 균일한 값을 갖는 사각형 윈도우 또는 가우시안 형태의 가중치를 갖는 윈도우이다.
    • 만약 E(\Delta x, \Delta y) 함수가 모든 방향으로 값이 크게 나타난다면 점 (x, y) 는 코너라고 간주할 수 있다.
    • 해리스는 E(\Delta x, \Delta y) 가 모든 방향으로 그 값이 크게 나타나는지를 검사하기 위해 테일러 급수(Taylor series), 고윳값 분석(eigenvalue analysis) 등의 수학적 기법을 적용하여 코너 응답 함수 R을 유도하였다.

R = Det(M) - k \cdot Tr(M)^{2}

  • 위 수식에서 Det()는 행렬식(determinant)을, Tr()은 대각합(trace)을 의미하고, 행렬 M은 다음과 같이 정의된다.

M = \sum_{x, y} w(x, y) \left[ \begin{array}{rr} I_{x} I_{x} & I_{x} I_{y} \\ I_{x} I_{y} & I_{y} I_{y} \end{array} \right]

  • 위 수식에서 I_{x} I_{y} s는 입력 영상 I 를 각각 x축 방향과 y축 방향으로 편미분한 결과이다.
    • 코너 응답 함수 정의에서 상수 k는 보통 0.04~0.06 사이의 값을 사용한다.
  • 해리스에 의해 정의된 코너 응답 함수 R은 입력 영상 각각의 픽셀에서 정의되는 실수 값이며, 이 값을 분석하여 코너, 에지, 평탄한 영역을 판별할 수 있다. 
    • 만약 R이 0보다 충분히 큰 양수이면 코너 점이라고 간주한다.
    • 반면 R이 0에 가까운 실수이면, 평탄한 영역이고, 0보다 작은 음수이면 에지라고 판별한다.
  • OpenCV는 해리스 코너 응답 함수 값을 계산하는 cornerHarris() 함수를 제공한다.
    • cornerHarris() 함수는 입력 영상 src의 모든 픽셀 위치에서 해리스 코너 응답 함수 값을 계산하고 그 결과를 dst 행렬로 반환한다.
    • dst 행렬의 모든 원소는 float 자료형을 사용하며, 이 값이 사용자가 지정한 임계값보다 크면 코너 점으로 판단할 수 있다.
    • 이때 하나의 코너 위치에 사용자가 지정 임계값보다 큰 픽셀이 여러 개 발생할 수 있으므로 간단한 비최대 억제를 수행하여 지역 최댓값 위치만 코너로 판별하는 것이 좋다.
void corner_harris()
{
Mat src = imread("building.jpg", IMREAD_GRAYSCALE);

if (src.empty())
{
cerr << "Image load failed!" << endl;
return;
}

Mat harris;
cornerHarris(src, harris, 3, 3, 0.04);

Mat harris_norm;
normalize(harris, harris_norm, 0, 255, NORM_MINMAX, CV_8U);

Mat dst;
cvtColor(src, dst, COLOR_GRAY2BGR);

for (int j = 1; j < harris.rows - 1; j++)
{
for (int i = 1; i < harris.cols - 1; i++)
{
if (harris_norm.at<uchar>(j, i) > 120)
{
if (harris.at<float>(j, i) > harris.at<float>(j-1, i) &&
harris.at<float>(j, i) > harris.at<float>(j+1, i) &&
harris.at<float>(j, i) > harris.at<float>(j, i-1) &&
harris.at<float>(j, i) > harris.at<float>(j, i+1))
{
circle(dst, Point(i, j), 5, Scalar(0, 0, 255), 2);
}
}
}
}

imshow("src", src);
imshow("harris_norm", harris_norm);
imshow("dst", dst);

waitKey(0);
destroyAllWindows();
}

Fast 코너 검출 방법

  • 해리스 코너 검출 방법은 영상의 코너 특성을 수학적으로 잘 정의하고, 복잡한 수식을 잘 전개하여 수치적으로 코너를 검출하였다는데 의미가 있다. 이후로도 비슷한 컨셉을 발전시켜 추적에 적합한 특징(Good Features to Track)이라는 이름의 코너 검출 방법도 제안되었고, OpenCV에도 그 기능이 구현되어 있다.
    • 그러니 이러한 코너 검출 방법들은 복잡한 연산을 필요로 하기 때문에 연산 속도가 느리다는 단점이 있다.
    • 이러한 코너 검출 방법과 달리 2006년에 발표된 FAST 코너 검출 방법은 단순한 픽셀값 비교 방법을 통해 코너를 검출한다. FAST는 Features from Accelerated Segment Test의 약자이다.
  • FAST 방법은 영상의 모든 픽셀에서 픽셀을 둘러싸고 있는 16개의 주변 픽셀과 밝기를 비교하여 코너 여부를 판별한다.
    • 아개 그림에서 점 p가 코너인지 판별하기 위해 점 p 주변 1번부터 16번 픽셀과의 밝기를 비교한다.
    • 만약 주변 16개의 픽셀 중에서 점 p 보다 충분히 밝거나 충분히 어두운 픽셀이 9개 이상 연속으로 존재하면 코너로 정의한다.

  • 점 P에서의 밝기를 I_{p} 라고 할 때, 주변 16개의 픽셀 중에서 그 값이 I_{p} + t 보다 큰 픽셀이 9개 이상 연속으로 나타나면 점 p는 어두운 영역이 뾰족하게 돌출되어 있는 코너이다.
    • 반면 주변 16개의 픽셀 중에서 그 값이 I_{p} - t 보다 작은 픽셀이 9개 이상 연속으로 나타나면 점 p는 밝은 영역이 돌출되어 있는 코너라고 간주한다.
    • 여기서 t는 충분히 밝거나 어두운 정도를 조절하기 위한 임계값이다.
  • FAST 방법은 특정 코너 점 주변 픽셀들도 함께 코너로 검출하는 경우가 많기 때문에 주변 코너 픽셀 중에서 가장 코너에 적합한 픽셀을 선택하는 비최대 억제 작업을 추가적으로 수행하는 것이 좋다.
    • FAST 방법에서는 코너 점 주변 16개 점과 픽셀 값 차이 합을 코너 점수로 정의하고, 인접한 코너 중에서 코너 점수가 가장 큰 코너만 최종 코너로 선택한다.
  • OpenCV는 FAST 코너 검출 방법을 구현한 FAST() 함수를 제공한다.
    • FAST() 함수의 입력 영상으로는 CV_8UC1 타입의 그레이스케일 영상만 사용할 수 있다.
    • FAST() 함수의 두 번째 인자 keypoints는 KeyPoint 클래스 객체의 벡터로 저장한다.
void corner_fast()
{
Mat src = imread("building.jpg", IMREAD_GRAYSCALE);

if (src.empty())
{
cerr << "Image load failed!" << endl;
return;
}

vector<KeyPoint> keyPoints;
FAST(src, keyPoints, 60, true);

Mat dst;
cvtColor(src, dst, COLOR_GRAY2BGR);

for (KeyPoint kp : keyPoints)
{
Point pt(cvRount(kp.pt.x), cvRound(kp.pt.y));
circle(dst, pt, 5, Scalar(0, 0, 255), 2);
}

imshow("src", src);
imshow("dst", dst);

waitKey(0);
destroyAllWindows();
}
  • Note)
    • cornerHarris() 함수와 FAST(0 함수의 동작 시간을 비교해보면 FAST 코너 검출 방법이 대략 20배 이상 빠르게 동작한다.

크기 불변 특징점 검출과 기술

크기 불변 특징점 알고리즘

  • 코너는 영상이 회전되어도 여전히 코너로 검출된다. 그러므로 코너는 회전 불변 특징점이라 할 수 있다. 그러나 영상의 크기가 변경될 경우 코너는 더 이상 코너로 검출되지 않을 수 있다.
    • 아래 그림은 객체의 크기 변화에 따른 코너의 형태 변화를 보여준다. 왼쪽 그림에서 파란색 사각형 내부는 에지가 급격하게 휘어지는 코너처럼 보이지만 영상이 확대되어 오른쪽 그림처럼 변경되면 같은 크기의 사각형 안에서 코너보다는 에지에 가까운 형태로 관측되는 것을 볼 수 있다.

  • 따라서 크기가 다른 두 객체 영상에서 단순한 코너 점을 이용하여 서로 같은 위치를 찾는 것에는 한계가 있다. 그래서 많은 사람들이 크기가 다른 영상에서도 지속적으로 검출될 수 있는 크기 불변 특징에 대해 연구하였고, 그중 가장 대표적인 알고리즘이 SIFT이다.
    • SIFT는 크기 불변 특징 변환(Scale Invariant Feature Transform)의 약자이며, 2004년 캐나다의 브리티시 컬럼비아 대학교의 로우(D. Lowe) 교수가 발표한 논문에 소개된 방법이다.
  • SIFT 알고리즘은 영상의 크기 변화에 무관하게 특징점을 추출하기 위해 입력 영상으로부터 스케일 스페이스(scale space)를 구성한다.
    • 스케일 스페이스는 영상에 다양한 표준 편차를 이용한 가우시안 블러링을 적용하여 구성한 영상 집합을 의미한다.
    • 레나 영상에 대해 스케일 스페이스를 구성한 예가 아래 그림과 같다.
    • 그림의 맨 윗줄에 나타난 여섯 개의 블러링된 영상이 스케일 스페이스를 구성한 결과이며, 이렇게 구성한 영상 집합을 옥타브(octave)라고 부른다.
    • 이후 입력 영상의 크기를 가로, 세로 반으로 줄여 가면서 여러 옥타브를 구성한다.

  • SIFT 알고리즘에서 크기에 불변한 특징점을 검출할 때는 인접한 가우시안 블러링 영상끼리의 차영상을 사용하며, 이를 DoG(Difference of Gaussian) 영상이라고 한다.
    • 위 그림 아래쪽에 나열한 영상이 레나 영사으로부터 구한 DoG 영상이다.
    • SIFT 알고리즘은 DoG 영상 집합에서 인접한 DoG 영상을 고려한 지역 극값 위치를 특징점으로 사용하며, 이후 에지 성분이 강하거나 명암비가 낮은 지점은 특징점에서 제외한다.
  • SIFT 알고리즘은 특징점을 검출하는 기능뿐만 아니라 특징점 주변의 픽셀 값을 이용한 기술자(descriptor) 계산 방법도 포함한다.
    • 특징점 기술자는 특징점 주변 영상의 특성을 여러 개의 실수 값으로 표현한 것을 의미하며, 특징 벡터(feature vector)라고도 한다.
    • 서로 같은 특징점에서 추출된 기술자는 실수 값 구성이 서로 일치해야 한다.
    • SIFT는 기본적으로 특징점 부근의 부분 영상으로부터 그래디언트 방향 히스토그램을 추출하여 기술자로 사용한다. 특징점 근방으로부터 특징점의 주된 방향 성분을 계산하고, 이 방향만큼 회전한 부분 영상으로부터 128개의 빈으로 구성된 그래디언트 방향 히스토그램을 계산한다.
    • 각각의 빈 값은 float 자료형을 사용하며, 하나의 SIFT 특징점은 512바이트 크기의 기술자료 표현된다.
  • SIFT 알고리즘은 영상의 크기, 회전 등의 변환 뿐만 아니라 촬영 시점 변환에도 충분히 강인하게 동작하며, 잡음의 영향과 조명 변화가 있어도 특징점을 반복적으로 잘 찾아낸다.
    • SIFT 알고리즘은 다양한 컴퓨터 비전 분야에서 적용되었고, 특히 객체 인식, 파노라마 영상 이어 붙이기 3차원 장면 인식 등의 분야에서 효과적으로 사용되었다.
  • SIFT 알고리즘이 발표된 이후, 많은 사람들이 SIFT 알고리즘의 속도와 성능을 개선한 알고리즘을 발표했다.
    • 2008년에 발표된 SURF(Speed-Up Robust Feature) 알고리즘은 SIFT에서 사용한 DoG 영상을 단순한 이진 패턴으로 근사화하여 속도를 향상시켰다.
    • 2012년에 발표된 KAZE 알고리즘은 가우시안 함수 대신 비등방성 확산 필터(nonlinear diffusion filter)를 이용하여 비선형 스케일 스페이스를 구축하여 특징점을 검출한다.
    • KAZE 알고리즘은 객체의 윤곽을 잘 보전함으로써 블러링, 크기 및 회전 변환, 잡음 등의 영향으로 변형된 영상에서 같은 특징점을 반복적으로 찾아내는 성능이 뛰어나다.
  • 그러나 SIFT, SURF, KAZE 방법은 스케일 스페이스를 구성하는 등의 복잡한 연산을 수행해야 하기 때문에 실시간 응용에서 사용하기 어렵다는 단점이 있다.
    • 또한 이들 특징점 알고리즘에 의해 만들어지는 기술자는 128개 또는 64개의 실수 값으로 구성되어 있어서 메모리 사용량이 많고, 특징점 사이의 거리 게산도 오래 걸릴 수 있다는 단점이 있다.
    • 그래서 2010년 전후 특징점 검출이 매우 빠르고 이진수로 구성된 기술자를 사용하는 알고리즘이 발표되기 시작했고, 그중 2011년에 발표된 ORB(Oriented FAST and Rotated BRIEF) 알고리즘은 당시 OpenCV를 관리하던 연구소에서 개발한 방법으로서 SIFT와 SURF를 대체하기에 좋은 알고리즘이다.
  • ORB 알고리즘은 기본적으로 FAST 코너 검출 방법을 이용하여 특징점을 추출한다. 다만 기본적인 FAST 알고리즘은 영상의 크기 변화에 취약하기 때문에 ORB 알고리즘은 입력 영상의 크기를 점진적으로 축소한 피라미드 영상을 추구하여 특징점을 추출한다.
    • 그리고 각 특징점에 주된 방향 성분을 계산하고, 방향을 고려한 BRIEF 알고리즘으로 이진 기술자를 계산한다.
  • ORB에서 사용한 BRIEF(Binary Robust Independent Elementary Feature)는 순수하게 특징점 기술자만을 생성하는 알고리즘으로 특징점 주변의 픽셀 쌍을 미리 정하고 해당 픽셀 값 크기를 비교하여 0 또는 1로 특징을 기술한다.
    • 두 점 x, y 에서의 픽셀 값 크기 비교 테스트 \tau  는 다음과 같이 정의한다.

\tau(x, y) = \begin{cases} 1 & I(x) < I(y) \\ 0 & else \end{cases}

  • 예컨대 아래 그림과 같이 특징점 p 주변에 a, b, c 점을 미리 정의하고, \tau(a, b), \tau(b, c), \tau(c, a)  를 구하면 이진수 110_{2} 를 얻을 수 있다.
    • 이진수 110_{2} 는 b 점이 a보다 밝고, c 점이 b 보다 밝고, a가 c 보다 어둡다는 정보를 표현한다.
    • 이처럼 특징점 주변 정보를 이진수 형태로 표현하는 기술자를 이진 기술자(binary descriptor)라고 한다.

  • ORB 알고리즘은 FAST 기반의 방법으로 특징점을 구한 후, 각 특징점에서 픽셀 밝기 값 분포를 고려한 코너 방향 성분을 계산한다.
    • 그리고 이 방향 성분을 이용하여 BRIEF 계산에 필요한 점들의 위치를 보정함으로써 회전에 불변한 BRIEF 기술자를 계산한다.
    • ORB 알고리즘에서는 기본적으로 256개의 크기 비교 픽셀 쌍을 사용하여 이진 기술자를 구성하며, 결과적으로 하나의 특징점은 256비트로 표현할 수 있다.
    • SIFT와 SURF 기술자가 512, 256 바이트를 사용하는 것에 비해 ORB는 32바이트의 크기로 특징점을 기술할 수 있어서 효율적이다.
  • 이진 기술자로 표현된 특징점 사이의 거리 계산은 주로 해밍 거리(Hamming distance) 방법을 사용한다.
    • 해밍 거리는 이진수로 표현된 두 기술자에서 서로 값이 다른 비트의 개수를 세는 방식으로 계산한다.
    • 해밍 거리 계산은 두 기술자의 비트 단위 배타적 논리합(XOR) 연산 후, 비트 값이 1인 개수를 세는 방식으로 빠르게 계산할 수 있다.
    • ORB 외에도 BRISK, AKAZE, FREAK 등의 이진 기술자를 사용하는 특징점 알고리즘이 있다.

OpenCV 특징점 검출과 기술

  • OpenCV에서 특징점 정보를 저장할 때 사용하는 클래스는 KeyPoint이며, 이 클래스는 특징점 좌표뿐만 아니라 특징점 검추 시 고려한 주변 영역의 크기, 주된 방향, 옥타브 정보 등을 변수로 갖고 있다.
  • OpenCV에서 특징점 관련 클래스는 모두 Feature2D 클래스를 상속 받아 만들어진다.
    • Feature2D 클래스는 detect(), compute(), detectAndCompute()라는 이름의 가상 멤버 함수를 갖고 있고, 이 클래스를 상속 받은 각각의 특징점 알고리즘 구현 클래스는 이들 멤버 함수의 기능을 실제로 구현하도록 설계되어 있다.
    • detect() 함수는 영상에서 키포인트를 검출하고, compute() 함수는 검출된 키포인트를 표현하는 기술자를 생성한다. detectAndCompute() 함수는 그 둘을 한번에 수행한다.
  • (이하 클래스와 함수 설명 생략)
void detect_keypoints()
{
Mat src = imread("box_in_scene.png", IMREAD_GRAYSCALE);

if (src.empty())
{
cerr << "Image load failed!" << endl;
return;
}

Ptr<Feature2D> feature = ORB::create();

vector<KeyPoint> keyPoints;
feature->detect(src, keypoints);

Mat desc;
feature->compute(src, keypoints, desc);

cout << "keypoints.size(): " << keyponts.size() << endl;
cout << "desc.size(): " << desc.size() << endl;

Mat dst;
drawKeypoints(src, keypoints, dst, Scalar::all(-1), DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

imshow("src", src);
imshow("dst", dst);

waitKey();
destroyAllWindows();
}

특징점 매칭

OpenCV 특징점 매칭

  • 특징점 매칭이란 두 영상에서 추출한 특징점 기술자를 비교하여 서로 비슷한 특징점을 찾는 작업을 의미한다. 특히 크기 불변 특징점으로부터 구한 기술자를 매칭하면 크기와 회전에 강인한 영상 매칭을 수행할 수 있다.
  • OpenCV에서 특징점 매칭 정보를 저장할 때 DMatch 라는 클래스를 사용한다.
    • DMatch 클래스는 한 장의 영상에서 추출한 특징점과 다른 한 장의 영상 또는 여러 영상에서 추출한 특징점 사이의 매칭 정보를 표현할 수 있다.
    • DMatch 클래스에서 distance 멤버 변수는 두 키포인트 기술자가 얼마나 차이가 나는지를 나타내는 매칭 척도의 역할을 한다. 두 특징점이 서로 유사하면 distance 값이 0에 가깝고, 서로 다른 특징점이면 distance가 크게 나타난다.
    • distance 계산 방식은 다차원 벡터의 유클리드 거리로 주로 계산하며, 다만 이진 기술자끼리 비교하는 경우에는 해밍 거리를 사용한다.
    • DMatch 클래스 객체는 보통 사용자가 직접 생성하지 않고, 특징점 매칭 알고리즘 내부에서 생성해서 사용자에게 반환한다.
  • OpenCV의 특징점 매칭 클래스는 DescriptorMatcher 클래스를 상속받아 만들어지는데, 이 클래스는 match(), knnMatch(), radiusMatch() 등의 가상 멤버 함수를 갖고 있는 추상 클래스이며 BFMatcher, FlannBasedMatcher 클래스는 이들 멤버 함수 기능을 구현하도록 설계되어 있다.
    • match() 함수는 가장 비슷한 기술자 쌍을 하나 찾고, knnMatch() 함수는 비슷한 기술자 쌍 k개를 찾는다. radiusMatch() 함수는 지정한 거리 반경 안에 있는 기술자 쌍을 모두 찾아 반환한다.
  • BFMatcher 클래스는 전수 조사(Brute-Force) 매칭을 수행한다. BFMatcher 클래스는 질의 기술자 집합에 있는 모든 기술자와 훈련 기술자 집합에 있는 모든 기술자 사이의 거리를 계산하고 이중 가장 거리가 작은 기술자를 찾아 매칭하는 방식이다.
    • BFMatcher 클래스의 매칭 결정 방법은 매우 직관적이지만, 특징점 개수가 늘어날수록 거리 계산 횟수가 급격하게 늘어날 수 있다는 단점이 있다.
    • 이러한 경우에는 FlannBasedMatcher 클래스를 사용하는 것이 효율적이다.
  • Flann(Fast Library approximate nearest neighbors)는 근사화된 최근방 이웃(ANN, Approximate Nearest Neighbors) 알고리즘을 빠르게 구현한 라이브러리이다.
    • FlannBasedMatcher 클래스는 Flann 라이브러리를 이용하여 빠르게 매칭을 수행한다.
    • FlannBasedMatcher 클래스는 근사화된 거리 계산 방법을 사용하므로 가장 거리가 작은 특징점을 찾지 못할 수 있지만, 매우 빠르게 동ㅈ가한다.
    • 다만 FlannBasedMatcher  클래스는 기본적으로 L2 노름 거리 측정 방식을 사용하므로 해밍 거리를 사용하는 이진 기술자에 대해서는 사용할 수 없다.
  • (클래스와 함수 설명 생략)
void keypoint_matching()
{
Mat src1 = imread("box.png", IMREAD_GRAYSCALE);
Mat src2 = imread("box_in_scene.png", IMREAD_GRAYSCALE);

if (src1.empty() || src2.empty())
{
cerr << "Image load failed!" << endl;
return;
}

Ptr<Feature2D> feature = ORB::create();

vector<KeyPoint> keypoints1, keypoints2;
Mat desc1, desc2;
feature->detectAndCompute(src1, Mat(), keypoints1, desc1);
feature->detectAndCompute(src2, Mat(), keypoints2, desc2);

Ptr<DescriptorMatcher> matcher = BFMatcher::create(NORM_HAMMING);

vector<DMatch> matches;
matcher->match(desc1, desc2, matches);

Mat dst;
drawMatches(src1, keypoints1, src2, keypoints2, matches, dst);

imshow("dst", dst);

waitKey();
destroyAllWindows();
}

  • DMatch 클래스는 기술자 사이의 거리를 표현하는 distance를 멤버 변수로 갖고 있다. 그러므로 distance 값이 너무 큰 매칭 결과는 무시하고 distance 값이 작은 결과만 사용하는 것이 좋다.
    • DMatch 클래스는 부등호 연산자에 대해 재정의가 되어 있고, 이 연산자 재정의에서는 distance 멤버 변수 크기를 비교하기 때문에 DMatch 객체를 std::sort() 함수로 정렬하면 자동으로 distance 값을 기준으로 정렬된다.
void good_matching()
{
Mat src1 = imread("box.png", IMREAD_GRAYSCALE);
Mat src2 = imread("box_in_scene.png", IMREAD_GRAYSCALE);

if (src1.empty() || src2.empty())
{
cerr << "Image load failed!" << endl;
return;
}

Ptr<Feature2D> feature = ORB::create();

vector<KeyPoint> keypoints1, keypoints2;
Mat desc1, desc2;
feature->detectAndCompute(src1, Mat(), keypoints1, desc1);
feature->detectAndCompute(src2, Mat(), keypoints2, desc2);

Ptr<DescriptorMatcher> matcher = BFMatcher::create(NORM_HAMMING);

vector<DMatch> matches;
matcher->match(desc1, desc2, matches);

std::sort(matches.begin(), matches.end());
// match 된 것 중에 상위 50개만 선별
vector<DMatch> good_matches(matches.begin(), matches.begin() + 50);

Mat dst;
drawMatches(src1, keypoints1, src2, keypoints2, matches, dst, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawmatchesFlags::NOT_DRAW_SINGLE_POINTS);

imshow("dst", dst);

waitKey();
destroyAllWindows();
}

호모그래피와 영상 매칭

  • 호모그래피란 3차원 공간사으이 평면을 서로 다른 시점에서 바라봤을 때 획득되는 영상 사이의 관계를 나타내는 용어이다.
    • 호모그래피는 수학적으로 하나의 평면을 다른 평면으로 투시 변환(perspective transform) 하는 것과 같은 관계에 있다.
    • 아래 그림은 3차원 공간에서 평면과 획득된 영상과의 호모그래피 관계를 보여준다.
    • 아래 그림은 바닥에 놓인 평면 P를 v_{1} 시점에서 바라본 영상 I_{1} v_{2} 시점에서 바라본 영상 I_{2} 사이의 관계를 호모그래피 H_{12} 로 표현하였다.
    • 또한 영상 I_{1} 과 평면 P 사이의 관계 또는 영상 I_{2} 와 평면 P 사이의 관계도 각각 호모그래피 H_{1} H_{2} 형태로 표현할 수 있다.

  • 실제적인 연산 관점에서 호모그래피는 투시 변환과 같기 때문에 호모그래피는 3 x 3 실수 행렬로 표현할 수 있다.
    • 또한 투시 변환을 구할 때와 마찬가지로 4개의 대응되는 점의 좌표 이동 정보가 있으면 호모그래피 행렬을 구할 수 있다.
    • 그러나 특징점 매칭 정보로부터 호모그래피를 구하는 경우에는 서로 대응되는 점 개수가 4개보다 훨씬 많기 때문에, 이러한 경우에는 투시 변환시 에러가 최소가 되는 형태의 호모그래피 행렬을 구해야 한다.
  • OpenCV에서는 두 영상 평면에서 추출된 특징점 매칭 정보로부터 호모그래피를 계산할 때 사용할 수 있는 findHomography() 함수를 제공한다.
    • findHomography() 함수는 두 평면 위에 있는 점들을 투영 변환하는 3 x 3 호모그래피 행렬을 반환한다. 원본 평면 상의 점 좌표를 (x_{i}, y_{i}) 로 표현하고 목표 평면상의 점 좌표를 (x_{i}', y_{i}') 로 표현할 경우 호모그래피 H는 다음 수식을 최소화하는 형태의 행렬이 된다.

\sum_{i} (x_{i}' - {h_{11}x_{i} + h_{12}y_{i} + h_{13} \over h_{31}x_{i} + h_{32}y_{i} + h_{33}})^{2} - (y_{i}' - {h_{21}x_{i} + h_{22}y_{i} + h_{23} \over h_{31}x_{i} + h_{32}y_{i} + h_{33}})^{2}

  • 위 수식에서 h_{ij}(1 \leq i, j \leq 3) 는 호모그래피 행렬 H의 원소를 나타내고 다음과 같은 관계를 만족시킨다.

s_{i} \left[ \begin{array}{rrr} x_{i}' \\ y_{i}' \\ 1 \end{array} \right] \sim H \left[ \begin{array}{rrr} x_{i} \\ y_{i} \\ 1 \end{array} \right] = \left[ \begin{array}{rrr} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array} \right] \left[ \begin{array}{rrr} x_{i} \\ y_{i} \\ 1 \end{array} \right]

  • findHomography() 함수의 method 인자에 기본값인 0을 지정하면 입력 점과 출력 점을 모두 사용하는 최소자승법(least squares)으로 호모그래피 행렬을 계산한다.
    • 그러나 일반적으로는 특징점 매칭 결과로부터 호모그래피를 계산할 때 최소자승법을 사용하면 호모그래피가 제대로 계산되지 않는다.
    • 잘못 매칭된 점들처럼 오차가 큰 입력 정보를 이상치(outlier)라고 부르며, 이상치가 많이 존재하는 경우에는 호모그래피 계산 방법 method를 LMEDS, RANSAC, RHO 방법으로 설정하는 것이 좋다.
    • LMEDS 메서드는 보통 이상치가 50% 이하인 경우 올바르게 작동하며, RANSAC, RHO 방법은 이상치가 50% 이상이라도 호모그래피 행렬을 잘 찾아주는 편이다.
    • RANSAC과 RHO 방법을 사용할 경우에는 srcPoints와 dstPoints에 저장된 점이 이상치가 아니라고 판단하기 위한 임계값을 설정해야 하며, 이 값은 ransacReprojThreshold 인자로 지정한다.
    • 만약 h * srcPoints_{i} dstPoints_{i} 사이의 거리가 ransacReprojThreshold 보다 작으면 정상치(inlier)로 간주한다.
  • Note)
    • RANSAC(RANdom SAmple Consensus) 알고리즘은 이상치가 포함된 입력 데이터로부터 수학적 모델 파라미터를 효과적으로 결정하는 알고리즘이다.
    • RANSAC 알고리즘으로 호모그래피를 계산하는 경우, 다수의 특징점 매칭 정보로부터 네 개의 대응점을 임의로 추출한다. 이 대응점 정보를 이용하여 3 x 3 호모그래피 행렬을 계산하고, 나머지 특징점 매칭 쌍 중에서 현재 구한 호모그래피 행렬에 부합되는 매칭 쌍 개수를 센다.
    • 그리고 다시 임의로 네 개의 대응점을 추출하고, 호모그래피 행렬 계산과 해당 호모그래피에 부합되는 매칭 쌍 개수 세는 작업을 반복한다.
    • 이 작업을 여러 번 반복한 후, 가장 많은 매칭 쌍의 지지를 받은 호모그래피 행렬을 최종 호모그래피 행렬로 결정하는 방식이 RANSAC이다.
void find_homography()
{
Mat src1 = imread("box.png", IMREAD_GRAYSCALE);
Mat src2 = imread("box_in_scene.png", IMREAD_GRAYSCALE);

if (src1.empty() || src2.empty())
{
cerr << "Image load failed!" << endl;
return;
}

Ptr<Feature2D> feature = ORB::create();

vector<KeyPoint> keypoints1, keypoints2;
Mat desc1, desc2;
feature->detectAndCompute(src1, Mat(), keypoints1, desc1);
feature->detectAndCompute(src2, Mat(), keypoints2, desc2);

Ptr<DescriptorMatcher> matcher = BFMatcher::create(NORM_HAMMING);

vector<DMatch> matches;
matcher->match(desc1, desc2, matches);

std::sort(matches.begin(), matches.end());
vector<DMatch> good_matches(matches.begin(), matches.begin() + 50);

Mat dst;
drawMatches(src1, keypoints1, src2, keypoints2, matches, dst, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawmatchesFlags::NOT_DRAW_SINGLE_POINTS);

vector<Point2f> pts1, pts2;
for (size_t i = 0; i < god_matches.size(); i++)
{
pts1.push_back(keypoints1[good_matches[i].queryIdx].pt);
pts2.push_back(keypoints2[good_matches[i].trainIdx].pt);
}

Mat H = findHomography(pts1, pts2, RANSAC);

vector<Point2f> corners1, corners2;
corners1.push_back(Point2f(0, 0));
corners1.push_back(Point2f(src1.cols-1.f, 0));
corners1.push_back(Point2f(src1.cols-1.f, src1.rows-1.f));
corners1.push_back(Point2f(0, src1.rows-1.f));
perspectiveTransform(corners1, corners2, H);

vector<Point> corners_dst;
for (Point2f pt : corners2)
{
corners_dst.push_back(Point(cvRound(pt.x + src1.cols), cvRound(pt.y)));
}

polylines(dst, corners_dst, true, Scalar(0, 255, 0), 2, LINE_AA);

imshow("dst", dst);

waitKey();
destroyAllWindows();
}

영상 이어붙이기

  • 영상 이어 붙이기(image stitching)는 여러 장의 영상을 서로 이어 붙여서 하나의 큰 영상을 만드는 기법이다.
    • 영상 이어 붙이기로 만들어진 영상을 파노라마 영상(panorama image)라고 부르며, 많은 디지털 카메라 또는 스마트폰 카메라 앱에서도 파노라마 영상을 만드는 기능을 제공하고 있다.
    • 영앗 이어 붙이기에서 입력으로 사용할 영상은 서로 일정 비율 이상으로 겹치는 영역이 존재해야 하며, 서로 같은 위치를 분간할 수 있도록 유효한 특징점이 많이 있어야 한다.
  • 영상 이어 붙이기를 수행하려면 입력 영상에서 특징점을 검출하고, 서로 매칭을 수행하여 호모그래피를 구해야 한다.
    • 그리고 구해진 호모그래피 행렬을 기반으로 입력 영상을 변형하여 서로 이어 붙이는 작업을 수행한다.
    • 이때 영상을 이어 붙인 결과가 자연스럽게 보이도록 이어 붙인 영사으이 밝기를 적절하게 보정하는 블렌딩(blending) 처리도 해야 한다.
  • OpenCV는 이러한 일련의 영상 이어 붙이기 작업ㅇ르 수행하는 Stitcher 클래스를 제공한다.
    • Stitcher 객체는 Stitcher ::create() 함수를 이용해서 생성할 수 있다. Stitcher ::create() 함수는 하나의 인자 mode를 가지지만 기본값으로 Stitcher::PANORAMA가 정의되어 있으므로 생략할 수 있다.
    • 만약 스캐너 등으로 여러 장의 영상을 이어 붙이려면 Stitcher::SCANS를 mode 값으로 지정한다.
    • Stitcher::PANORAMA는 입력 영상들이 서로 투시 변환(또는 호모그래피) 관계에 있다고 가정하고 Stitcher::SCANS 모드는 입력 영상들이 서로 어파인 관계라고 간주한다.
int main(int argc, char* argv[])
{
if (argc < 3)
{
cerr << "Usage: stitching.exe <image_file1> <image_file2> [<image_file3>...]" << endl;
return -1;
}

vector<Mat> imgs;
for (int i = 1; i < argc; i++)
{
Mat img = imread(argv[i]);

if (img.empty())
{
cerr << "Image load failed!" << endl;
return -1;
}
imgs.push_back(img);
}

Ptr<Stitcher> stitcher = Stitcher::create();

Mat dst;
Stitcher::Status status = stitcher->stitch(imgs, dst);

if (status != Stitcher::Status::OK)
{
cerr << "Error on stitching!" << endl;
return -1;
}

imwrite("result.jpg", dst);
imshow("dst", dst);

waitKey();
return 0;
}

OpenCV 4로 배우는 컴퓨터 비전과 머신 러닝/ 객체 검출

템플릿 매칭

  • 입력 영상에서 작은 크기의 부분 영상 위치를 찾아내고 싶은 경우에 주로 템플릿 매치(template matching) 기법을 사용한다. 
    • 여기서 템플릿(template)은 찾고자 하는 대상이 되는 작은 크기의 영상을 의미한다.
  • 아래 그림은 템플릿 매칭의 동작 방식이다.
    • (a)와 같이 템플릿 영상을 입력 영상 전체 영역에 대해 이동하면서 템플릿 영상과 입력 영상 부분 영상과의 유사도(similarity) 또는 비유사도(dissimilarity)를 계산한다.
    • 유사도를 계산할 경우에는 템플릿 영상과 비슷한 부분 영상 위치에서 값이 크게 나타나고, 반대로 비유사도를 계산할 경우 템플릿 영상과 비슷한 부분에서 값이 작게 나타난다.

  • OpenCV에서는 matchTemplate() 함수를 이용하여 템플릿 매칭을 수행할 수 있다.
    • matchTemplate() 함수는 입력 영상 image에서 템플릿 영상 templ을 이용하여 템플릿 매칭을 수행하고 그 결과로 생성되는 유사도 맵 또는 비유사도 맵을 result 인자로 반환한다.
    • 만약 image 영상의 크기가 W x H이고 templ 영상의 크기가 w x h 인경우, result 행렬의 크기는 (W-w+1) x (H-h+1)로 결정된다.
    • matchTemplate() 함수에서 템플릿 영상과 입력 영상 간의 비교 방식은 method 인자로 설정할 수 있다. method인자는 TemplateMatchModes 열거형 상수 중 하나를 지정할 수 있다.
TemplateMatchModes 설명
TM_SQDIFF

제곱차 매칭 방법
R(x, y) = \sum_{x', y'}(T(x', y') - I(x+x', y+y'))^{2}

TM_SQDIFF_NORMED 정규화된 제곱차 매칭 방법
R(x, y) = { \sum_{x', y'}(T(x', y') - I(x+x', y+y'))^{2} \over \sqrt{\sum_{x', y'}T(x', y')^{2} \cdot \sum_{x', y'}I(x+x', y+y')^{2}} }
TM_CCORR 상관관계 매칭 방법
R(x, y) = \sum_{x', y'}T(x', y') \cdot I(x+x', y+y')
TM_CCORR_NORMED 정규화된 상관관계 매칭 방법
R(x, y) = { \sum_{x', y'}T(x', y') \cdot I(x+x', y+y') \over \sqrt{ \sum_{x', y'}T(x', y')^{2} \cdot I(x+x', y+y')^{2}}}
TM_CCOEFF 상관계수 매칭 방법
R(x, y) = \sum_{x', y'}T'(x', y') \cdot I'(x+x', y+y')
T'(x', y') = T(x', y') - {1 \over w \cdot h} \cdot \sum_{x'', y''}T'(x'', y'')
I'(x+x', y+y') = I(x+x', y+y') - {1 \over w \cdot h} \cdot \sum_{x'', y''} I(x+x'', y+y'')
TM_CCOEFF_NORMED 정규화된 상관계수 매칭 방법
R(x, y) = { \sum_{x', y'}T'(x', y') \cdot I'(x+x', y+y') \over \sqrt{\sum_{x', y'}T'(x', y')^{2} \cdot \sum_{x',y'}I'(x+x', y+y')^{2}} }
  • TM_SQDIFF는 제곱차(squared difference) 매칭 방법을 의미하며, 이 경우 두 영상이 완벽하게 일치하면 0이 되고, 서로 유사하지 않으면 0보다 큰 양수를 갖는다.
  • TM_CCORR는 상관관계(correlation) 매칭 방법을 의미하며, 이 경우 두 영상이 유사하면 큰 양수가 나오고 유사핮 ㅣ않으면 작은 값이 나온다.
  • TM_CCOEFF는 상관계수(correlation coefficient) 매칭 방법을 의미하며, 이는 비교할 두 영상을 미리 평균 밝기로 보정한 후 상관관계 매칭을 수행하는 방식이다. TM_CCOEFF 방법은 두 영상이 유사하면 큰 양수가 나오고 유사하지 않으면 0에 가까운 양수 또는 음수가 나온다.
  • TM_SQDIFF, TM_CCORR, TM_CCOEFF 방법에 대해 영상의 밝기 차이 영향을 줄여 주는 정규화 수식이 된 TM_SQDIFF_NORMED, TM_CCORR_NORMED, TM_CCOEFF_NORMED 방법도 제공된다.
    • TM_CCORR_NORMED 방법은 결과값이 0-1 사이의 실수로 나타나고, TM_CCOEFF_NORMED 방법은 -1에서 1사이의 실수로 나타난다. 두 방법 모두 결과가 1에 가까울 수록 매칭이 잘 되었음을 의미한다.
  • 여러 매칭 방법 중에서 상관계수 매칭 방법이 좋은 결과를 제공하는 것으로 알려져 있다.
    • 그러나 계산 수식이 복잡하고 실제 동작시 연산량이 많다는 점을 고려해야 한다.
    • 제곱차 매칭 방법을 사용할 경우, result 결과 행렬에서 최솟값 위치를 가장 매칭이 잘 된 위치로 선택해야 한다.
    • 반면 상관관계 또는 상관계수 매칭 방법을 사용할 경우에는 result 결과 행렬에서 최댓값 위치가 가장 매칭이 잘 된 위치이다.
    • 참고로 result 행렬에서 최솟값 또는 최댓값 위치는 OpenCV의 minMaxLoc() 함수를 이용하여 알아낼 수 있다.
void template_matching()
{
Mat img = imread("circuit.bmp", IMREAD_COLOR);
Mat templ = imread("crystal.bmp", IMREAD_COLOR);

if (img.empty() || templ.empty())
{
cerr << "Image load failed!" << endl;
return;
}

img = img + Scalar(50, 50, 50);

Mat noise(img.size(), CV_32SC3);
randn(noise, 0, 10);
add(img, noise, img, Mat(), CV_8UC3);

Mat res, res_norm;
matchTemplate(img, templ, res, TM_CCOEFF_NORMED);
normalize(res, res_norm, 0, 255, NORM_MINMAX, CV_8U);

double maxv;
Point maxloc;
minMaxLoc(res, 0, &maxv, 0, &maxloc);
cout << "maxv: " << maxv << endl;

rectangle(img, Rect(maxloc.x, maxloc.y, templ.cols, templ.rows), Scalar(0, 0, 255), 2);

imshow("templ", templ);
imshow("res_norm", res_norm);
imshow("img", img);

waitKey(0);
destroyAllWindows();
}
  • Note) 템플릿 매칭은 알고리즘 특성상 입력 영상이 최전되거나 크기가 변경되면 제대로 동작하지 않는다. 또한 찾고자 하는 템플릿 영사잉 다른 객체에 의해 가려져도 좋은 결과를 기대할 수 없다. 이런 경우에는 템플릿 매칭 방법보다는 특징점 매칭 기법을 사용하는 것이 낫다.

캐스게이드 분류기와 얼굴 검출

  • OpenCV에서 제공하는 얼굴 검출 기능은 2001년 비올라(P. Viola)와 존스(M. Jones)가 발표한 부스팅(boosting) 기반의 캐스케이드 분류기(cascade classifier) 알고리즘 기반으로 만들어졌다.
    • 비올라와 존스가 개발한 객체 검출 알고리즘은 기본적으로 다양한 객체를 검출할 수 있지만, 특히 얼굴 검출에 적용되어 속도와 정확도를 인정받은 기술이다.
  • 비올라-존스 얼굴 검출 알고리즘은 기본적으로 영상은 24 x 24 크기로 정규화한 후, 유사-하르필터(Haar-like filter) 집합으로부터 특징 정보를 추출하여 얼굴 여부를 판별한다.
    • 유사-하르 필터란 흑백 사각형이 서로 붙어 있는 형태로 구성된 필터이며, 24 x 24 영상에서 만들 수 있는 유사-하르 필터의 예는 아래 그림과 같다.
    • 유사-하르 필터 형태에서 흰색 영역 픽셀 값은 모두 더하고, 검은색 영역 픽셀 값은 모두 빼서 하나의 특징 값을 얻을 수 있다.
    • 사람의 정면 얼굴 형태가 전형적으로 밝은 영역(이마, 미간, 볼 등)과 어두운 영역(눈썹, 입술 등)이 정해져 있기 때문에 유사-하르 필터로 구한 특징 값은 얼굴을 판별하는 용도로 사용할 수 있다.

  • 그러나 24 x 24 크기에서 유사-하르 필터를 약 18만개 생성할 수 있고, 픽셀 값의 합과 차를 계산하는 것이 시간이 오래 걸린다는 점이 문제가 되었기 때문에 비올라와 존스는 에이다부스트(adaboost) 알고리즘과 적분 영상(integral image)를 이용하여 이 문제를 해결하였다.
    • 에이다부스트 알고리즘은 수많은 유사-하르 필터 중에서 얼굴 검출에 효과적인 필터를 선별하는 역할을 수행한다.
    • 실네 논문에서는 약 6000개의 유사-하르 필터를 선별하였으며, 이 중 얼굴 검출에 가장 유용하다고 판별된 유사-하르 피러의 일부가 아래 그림과 같다.

  • 에이다부스트 알고리즘에 의해 24 x 24 부분 영상에서 검사할 특징 개수가 약 6000개로 감소하였지만, 입력 영상 전체에서 부분 영상을 추출해서 검사해야 하기 때문에 여전히 연산량이 부담될 수 있다.
    • 더구나 나타날 수 있는 얼굴 크기가 다양하기 때문에 보통 입력 영상의 크기를 줄여 가면서 전체 영역에 대한 검사를 다시 수행해야 한다.
    • 비올라와 존스는 대부분의 영상에 얼굴이 한두 개 있을 뿐이고 나머지 대부분의 영역은 얼굴이 아니라는 정메서 캐스케이드(cascade) 구조라는 새로운 방식을 도입하여 얼굴이 아닌 영역을 빠르게 걸러 내는 방식을 사용한다.
  • 아래 그림은 얼굴이 아닌 영역을 걸러 내는 캐스케이드 구조이다.
    • 캐스케이드 구조 1단계에서는 얼굴 검출에 가장 유용한 유사-하르 필터 하나를 사용하여, 얼굴이 아니라고 판단되면 이후의 유사-하르 필터 계산은 수행하지 않는다.
    • 1단계를 통과하면 2단계에서 유사-하르 필터 다섯 개를 사용하여 얼굴이 아닌지를 검사하고, 얼굴이 아니라고 판단되면 이후 단계의 검사는 수행하지 않는다.
    • 이러한 방식으로 얼굴이 아닌 영역을 빠르게 제거함으로써 비올라-존스 얼굴 검출 알고리즘은 다른 얼굴 검출 방식보다 약 15배 빠르게 동작하는 성능을 보여줬다.

  • OpenCV는 비올라-존스 알고리즘을 구형하여 객체를 분류할 수 있는 CascadeClassifier 클래스를 제공한다.
    • CascadeClassifier 클래스는 미리 훈련된 객체 검출 분류기 XML 파일을 불러오는 기능과 주어진 영상에서 객체를 검출하는 기능으로 이루어져있다.
    • CascadeClassifier 객체를 생성한 후에 미리 훈련된 분류기 정보를 불러올 수 있는데, 분류기 정보는 XML 파일 형식으로 저장되어 있으며, OpenCV는 미리 훈련된 얼굴 검출, 눈 검출 등을 위한 분류기 XML 파일을 제공한다.
    • 이러한 미리 훈련된 분류기 XML 파일은 %OPENCV_DIR%\etc\haarcascades 폴더에 존재한다.
    • 이 폴더에서 찾을 수 있는 XML 파일 이름과 검출 대상에 대한 설명은 아래 표와 같다.
    • OpenCV는 하나의 검출 대상에 대해 서로 다른 방법으로 훈련된 여러 개의 XML 파일을 제공한다.
XML 파일 이름 검출 대상
haarcascade_frontalface_default.xml
haarcascade_frontalface_alt.xml
haarcascade_frontalface_alt2.xml
haarcascade_frontalface_alt_tree.xml
정면 얼굴 검출
haarcascade_profileface.xml 측면 얼굴 검출
haarcascade_smile.xml 웃음 검출

haarcascade_eye.xml
haarcascade_eye.tree_eyeglasses.xml
haarcascade_lefteye_2splits.xml
haarcascade_righteye_2splits.xml

눈 검출
haarcascade_frontalcatface.xml
haarcascade_frontalcatface_extended.xml
고양이 얼굴 검출
haarcascade_fullbody.xml 사람의 전신 검출
haarcascade_upperbody.xml 사람의 상반신 검출
haarcascade_lowerbody.xml 사람의 하반신 검출
haarcascade_russial_plate_number.xml
haarcascade_licence_plate_rus_16statges.xml
러시아 자동차 번호판 검출
  • XML 파일을 정상적으로 불러왔다면 CascadeClassfier::detectMultiScale() 멤버 함수를 이용하여 객체 검출을 수행할 수 있다.
    • CascadeClassfier::detectMultiScale() 함수는 입력 영상 image에서 다양한 크기의 객체 사각형 영역을 검출한다. 만약 입력 영상 image가 3채널 컬러 영상이면 함수 내부에서 그레이스케일 형식으로 변환하여 객체를 검출한다.
    • 각각의 사각형 영역 정보는 Rect 클래스를 이용하여 표현하고 vector<Rect> 타입의 인자 objects에 검출된 모든 사각형 정보가 저장된다.
    • scaleFactor 인자는 검색 윈도우의 확대 비율을 지정한다.
    • CascadeClassfier::detectMultiScale() 함수는 다양한 크기의 얼굴을 검출하기 위하여 처음에는 작은 크기의 검색 윈도우를 이용하여 객체를 검출하고 이후 scaleFactor 값의 비율로 검색 윈도우 크기를 확대시키면서 여러 번 객체를 검출한다.
    • minNeighbors 인자에는 검출할 객체 영역에서 얼마나 많은 사각형이 중복되어 검출되어야 최종적으로 객체 영역으로 설정할지를 지정한다. minNeighbors 값을 기본값인 3으로 설정하면 검출된 사각형이 최소 3개 이상 중첩되어야 최종적으로 객체 영역으로 판단한다.
void detect_face()
{
Mat src = imread("kids.png");

if (src.empty())
{
cerr << "Image load failed!" << endl;
return;
}

CascadeClassfier classfier("haarcascade_frontalface_default.xml");

if (classifier.empty())
{
cerr << "XML load failed!" << endl;
return;
}

vector<Rect> faces;
classifier.detectMultiScale(src, faces);

for (Rect rc : faces)
{
rectangle(src, rc, Scalar(255, 0, 255), 2);
}

imshow("src", src);

waitKey(0);
destroyAllWindows();
}
  • 만일 얼굴 안에서 눈을 검출하고자 한다면, 먼저 얼굴을 검출하고 얼굴 영역 안에서만 눈을 검출하는 것이 효율적이다.
void detect_eyes()
{
Mat src = imread("kids.png");

if (src.empty())
{
cerr << "Image load failed!" << endl;
return;
}

CascadeClassfier face_classfier("haarcascade_frontalface_default.xml");
CascadeClassfier eye_classfier("haarcascade_eye.xml");

if (face_classifier.empty() || eye_classifier.empty())
{
cerr << "XML load failed!" << endl;
return;
}

vector<Rect> faces;
classifier.detectMultiScale(src, faces);

for (Rect face : faces)
{
rectangle(src, face, Scalar(255, 0, 255), 2);

Mat faceROI = src(face);
vector<Rect> eyes;
eye_classifier.detectMultiScale(faceROI, eyes);

for (Rect eye : eyes)
{
Point center(eye.x + eye.width / 2, eye.y + eye.height / 2);
circle(faceROI, center, eye.width / 2, Scalar(255, 0, 0), 2, LINE_AA);
}
}

imshow("src", src);

waitKey(0);
destroyAllWindows();
}

HOG 알고리즘과 보행자 검출

  • HOG(Histograms of Oriented Gradients)는 그래디언트 방향 히스토그램을 의미한다.
    • 다랄(N. Dalal)과 트릭스(B. Triggs)는 사람이 서 있는 영상에서 그래디언트를 구하고, 그래디언트의 크기와 방향 성분을 이용하여 사람이 서 있는 형태에 대한 특징 벡터를 정의하였다. 그리고 머신 러닝의 일종인 서포트 벡터 머신(SVM, Support Vector Machine) 알고리즘을 이용하여 입력 영상에서 보행자 위치를 검출하는 방법을 제안하였다.
  • 아래 그림을 예로 HOG를 계산하는 방법에 대해 설명해 보겠다.
    • 보행자 검출을 위한 HOG는 기본적으로 64 x 128 크기의 영상에서 계산한다. HOG 알고리즘은 먼저 입력 영상으로부터 그래디언트를 계산한다. 그래디언트는 크기와 방향 성분으로 계산하며, 방향 성분은 0도부터 180도까지로 설정한다.
    • 그 다음 입력 영상을 8 x 8 크기 단위로 분할하는데, 각각의 8 x 8 부분 영상을 셀(cell)이라 한다. 64 x 128 영상에서 셀은 ㅏ로 방향으로 8개, 세로 방향으로 16개 생성된다.
    • 각각의 셀로부터 그래디언트 방향 성분에 대한 히스토그램을 구하며, 이때 방향 성분을 20도 단위로 구분하면 총 9개의 빈으로 구성된 방향 히스토그램이 만들어진다. 그리고 인접한 4개의 셀을 합쳐서 블록(block)이라고 정의한다.
  • 아래 그림의 (b)에서 노란색 실선은 셀을 구분하는 선이고, 빨간색 사각형은 블록 하나를 나타낸다.
    • 하나의 블록에는 네 개의 셀이 있고, 각 셀에는 9개의 빈으로 구성된 히스토그램 정보가 있으므로 블록 하나에는 총 36개의 실수 값으로 이루어진 방향 히스토그램 정보가 추출된다.
    • 블록은 가로와 세로 방향으로 각각 한 개의 셀만큼 이동하면서 정의한다. 그러므로 64 x 128 영상에서 블록은 가로 방향으로 7개, 세로 방향으로 15개 정의할 수 있다.
    • 결국 영상에서 105개의 블록이 추출될 수 있고, 전체 블록에서 추출되는 방향 히스토그램 실수 값 개수는 3780개가 된다. 이 3780개의 실수 값이 64 x 128 영상을 표현하는 HOG 특징 벡터 역할을 한다.
    • 아래 그림의 (c)는 각 셀에서 계산된 그래디언트 방향 히스토그램을 비주얼하게 표현한 결과이다.

  • 다랄과 트릭스는 수천 장의 보행자 영상과 보행자가 아닌 영상에서 HOG 특징 벡터를 추출하였고, 이 두 특징 벡터를 구분하기 위해 SVM 알고리즘을 사용했다.
    • SVM은 두 개의 클래스를 효과적으로 분리하는 능력을 가진 머신 러닝 알고리즘으로 다랄과 트릭스는 수천 개의 보행자 특징 벡터와 보행자가 아닌 특징 벡터를 이용하여 SVM을 훈련시켰고, 효과적인 보행자 검출 방법을 완성시켰다.
    • HOG와 SVM을 이용한 객체 검출 기술은 이후 보행자 검출 뿐만 아니라 다양한 형태의 객체 검출에서도 응용되었다.
  • OpenCV에서는 HOG 알고리즘을 구현한 HOGDescriptor 클래스를 제공한다.
    • HOGDescriptor 클래스를 이용하면 특정 객체의 HOG 기술자를 쉽게 구할 수 있다. 또한 HOGDescriptor  클래스는 보행자 검출을 위한 용도로 미리 계산된 HOG 기술자 정보를 제공한다.
    • HOGDescriptor 클래스를 이용하여 원하는 객체를 검출하려면 먼저 검출할 객체에 대해 훈련된 SVM 분류기 계수를 HOGDescriptor::setSVMDetector() 함수에 등록해야 한다.
    • 보행자 검출이 목적이라면 HOGDescriptor::getDefaultPeopleDetector() 함수가 반환한 분류기 계수를 HOGDescriptor::setSVMDetector() 함수 인자로 전달하면 된다.
    • HOG 기술자를 이용하여 실제 입력 영상에서 객체 영역을 검출하려면 HOGDescriptor::detectMultiScale() 멤버함수를 이용하면 된다.
VideoCapture cap("vtest.avi");

if (!cap.isOpened())
{
cerr << "Video open failed!" << endl;
return -1;
}

HOGDescriptor hog;
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

Mat frame;
while (true)
{
cap >> frame;
if (frame.empty())
break;

vector<Rect> detected;
hog.detectMultiScale(frame, detected);

for (Rect r : detected)
{
Scalar c = Scalar(rand() % 256, rand() % 256, rand() % 256);
rectangle(frame, r, c, 3);
}

imshow("frame", frame);

if (waitKey(10) == 27)
break;

return 0;
}

QR 코드 검출

  • 입력 영상에서 QR 코드를 인식하려면 먼저 QR 코드 세 모서리에 포함된 흑백 정사각형 패턴을 찾아 QR 코드 전체 영역 위치를 알아내야 한다.
    • 그리고 검출된 QR 코드를 정사각형 형태로 투시 변환한 후, QR 코드 내부에 포함된 흑백 격자 무늬를 해석하여 문자열을 추출해야 한다.
    • 이러한 일련의 연산은 매우 복잡하고 정교한 영상 처리를 필요로 하는데, 다행히 OpenCV는 4.0 버전부터 QR 코드를 검출하고 문자열을 해석하는 기능을 제공한다.
  • OpenCV에서 QR 코드를 검출하고 해것하는 기능은 QRCodeDetector 클래스에 구현되어 있다.
    • QRCodeDetector::detect() 함수를 이용하면 QR 코드 영역을 검출할 수 있고, QRCodeDetector::decode() 함수를 이용하면 QR 코드에 암호화 되어 있는 문자열을 검출할 수 있다.
    • QRCodeDetector::detectAndDecode()는 위 과정을 한 번에 수행하여 최종적으로 해석된 문자열을 반환한다.
void decode_qrcode()
{
VideoCapture cap(0);

if (!cap.isOpened())
{
cerr << "Camera open failed!" << endl;
return;
}

QRCodeDetector detector;

Mat frame;
while(true)
{
cap >> frame;

if (frame.empty())
{
cerr << "Frame load failed!" << endl;
break;
}

vector<Point> points;
String info detector.detectAndDecode(frame, points);

if (!info.empty())
{
polylines(frame, points, true, Scalar(0, 0, 255), 2);
putText(frame, info, Point(10, 30), FONT_HERSHEY_DUPLEX, 1, Scalar(0, 0, 255));

imshow("frame", frame);

if (waitKey(1) == 27)
break;
}
}
}